

VILLAGE OF BARTLETT PLAN COMMISSION AGENDA

BARTLETT MUNICIPAL CENTER 228 MAIN STREET August 11, 2016

7:00 P.M.

- I. Roll Call
- II. Approval of June 9, 2016 minutes & July 14, 2016 minutes
- III. (#16-13) BAPS Phase 4 Final PUD Plan
- IV. (#16-05) Ashton Gardens
 Preliminary/Final PUD Plan and Special Uses:
 - (a) Planned Unit Development (PUD),
 - (b) Banquet Facility (Public Assembly),
 - (c) The Serving of Liquor and
 - (d) Building Height **PUBLIC HEARING**
- V. Old Business/New Business
- VI. Adjournment

COMMUNITY DEVELOPMENT MEMORANDUM

16-149

DATE:

August 1, 2016

TO:

The Chairman and Members of the Plan Commission

FROM:

Roberta B. Grill, Assistant Com Dev Director

RE:

(#15-13) BAPS

PETITIONER

BAPS Chicago, LLC

SUBJECT SITES

1851 S. Route 59 (Pramukh Swami Road)

REQUESTS

Final PUD Plan for Phase 4

SURROUNDING LAND USES

	<u>Land Use</u>	Comprehensive Plan	Zoning	
Subject Site	Religious	Municipal/Institutional	ER-1 PUD	
North South East West	Single Family, Vacant Residential Residential Residential/	Mixed Use Business Park Estate Residential Estate Residential N/A (Wayne)/	B-3 PUD, R-3* R-2* R-2* W-2** W-4**	

^{*} DuPage County

DISCUSSION

1. The 38 acre BAPS property was annexed to the Village and rezoned in September of 2012 by Ordinances #2012-70, 71 & 72. Phases 1, 2 & 3A were approved as part of a Preliminary/Final PUD Plan that included the existing buildings and an expanded parking area. Phases 4, 5 and 6 were approved as part of the PUD in Concept and identified on the Phasing Plan for the future development of the BAPS property (see attached Concept and Phasing Plans).

^{**}Village of Wayne

- 2. The Petitioner is now requesting a Final PUD Plan review for Phase 4 which would include the construction of a Family Activity Center. This building, located north of the Temple, would mirror the exterior appearance, size, height and footprint of the existing Cultural Center located south of the Temple. Per the Building Elevations, the overall height would be 53'4" (below the maximum height of 71'9" of the Temple) and the size of the building would be approximately 100,000 sq. ft. (110,020 sq. ft. including storage areas in the lower level).
- 3. The Family Activity Center would consist of an indoor gymnasium, including a track and basketball court, boys' and girls' classrooms, a lounge, play area, youth workshop, exhibit display area, along with a number of offices and substantial storage space. A specialty kitchen and food prep area along with the Nilkanthvarni (small prayer area) would be moved from the Cultural Center to the lower level of the Youth Activity Center to free up space in the Cultural Center's lower level.
- 4. Phase 3B has been completed and consisted of the BAPS property connecting to the Village's water and sewer systems. These connections included both on-site and off-site improvements outlined in the Annexation Agreement.
- 5. Phase 3A is the last phase of parking on the BAPS (Mandir) Site and would include an additional 96 parking spaces. These spaces have not been completed due to this being the former septic field area. As required in the Annexation Agreement, this phase would need to be completed prior to the occupancy of the Phase 4 building and the Petitioner has agreed to this requirement.
- 6. As stated in the Annexation Agreement, a Traffic Study would need to accompany the Phase 4 application to verify that the parking needs on this property would be satisfied. A Traffic Study prepared by Gewalt Hamilton Associates, Inc. (GHA) has been submitted for the Staff to review (see attached) and the Village's Traffic Consultant, Brent Coulter with Coulter Transportation Consulting, LLC (Coulter) has reviewed and commented on the study (see attached comments).
- 7. In summary, GHA states "the proposed expansion is not anticipated to be a significant generator of new site traffic, but would serve the current site uses and demand. The new facility will provide extra space for the overcrowded girls' classrooms, the boys instruction, which is taking place in the priest's residences and the dining area which is currently too small to accommodate the Sunday activities. The Family Activity Center will allow for the current spaces in the Cultural Center to be utilized for their original intended uses."
- 8. The Petitioner has stated minimal activity will occur in the Family Activity Center during the week and the primary use of the building will take place on Sundays when all of the facilities are being utilized simultaneously by existing guests/worshipers.

9. Below is a summary of the parking spaces provided on the site and those required in strict accordance with the Zoning Ordinance.

Parking Summary

	Parking Provided	Parking Required	
Phases 1 & 2	725*	745	
Phase 3A	96		
Phase 4 (Per Zoning Ord)	0	410	
	Total = 821	Total = 1155	
		DEFICIT = 334 spaces	
الواب أفال حدار فيسارة لشروري		(1155 - 821= 334)	

(*Modification granted for a reduction in parking (20 spaces) by Ord. #2012-72)

10. As part of the PUD, the Petitioner would be requesting a modification to reduce the required number of parking spaces. The above chart identifies a deficit of 334 parking spaces due to the Zoning Ordinance requiring 410 additional parking spaces for the new building and its uses. However, once the 96 parking spaces are constructed as part of Phase 3A; the parking on site will total 821 spaces. These additional spaces will provide for an increase in available parking of approximately 29% above the current peak demand of 637 vehicles. Future peak parking in the year 2020 will be 757 parking spaces, still below the 821 provided. According to GHA, "the proposed on-site parking supply will accommodate the peak parking demand on-site for approximately 7 years."

With the historical demand in membership growth at 3.5% annually, the 821 spaces should accommodate the peak on-site parking for this time period. The Village's Consultant (Coulter) concurs with the majority of GHA's findings and agrees that "the Petitioner makes a strong argument that parking demand may in some instances be double counted and some adjustment of the aggregate parking required by the strict parking requirements outlined in the Zoning Ordinance is appropriate."

- 11. Staff concurs with Coulter's comments and believes that the Family Activity Center will primarily be double counting those currently attending Sunday Services and that the strict interpretation of the Zoning Ordinance provides a hardship for the Petitioner. The Village's Consultant also states, that it may be important to look at providing an additional parking supply in 3 to 4 years rather than 7 and conditions for future parking on Phase 5 may need to be reviewed sooner so that future demand for parking can be met in a timely manner.
- 12. As in the past, during special events/festivals, overflow parking was available on the future Yogi Plaza Site and arrangements were made with St. Andrews Golf Course, Resurrection Church and Bartlett High School that provided additional parking with groups being bussed to the Mandir Site during these infrequent peak times.

- 13. There is one existing curb cut along Rt. 59 for ingress and egress to the Temple Property. However, when the future commercial phases are developed, additional curb cuts may be provided along Army Trail Road providing additional access to both the Future Yogi Plaza and the BAPS Mandir Site.
- 14. Landscaping and Lighting Plans have been reviewed and approved by the Staff.

RECOMMENDATION

- 1. The Staff recommends **approval** of the Petitioner's request for a Final PUD Plan for Phase 4 subject to the following conditions and findings of fact:
 - a. Village Engineer's approval of the Final Engineering Plans;
 - b. Completion of the 96 parking spaces within Phase 3A prior to the issuance of an occupancy permit for Phase 4;
 - c. The landscaping of the Property shall be provided, planted, completed and maintained in accordance with the Landscape Plan;
 - d. Landscaping for Phase 4 shall be installed within one year from the issuance of an occupancy permit;
 - e. The Village will continue to monitor the parking demand on the BAPS Property (Phases 1, 2, 3A and 4) once Phase 4 has been completed. The Village may require the Petitioner to construct additional parking (on the Yogi Plaza Site Phase 5) prior to the year 2023 (when peak parking demand may exceed the parking supply on-site) and/or when the parking demand reaches 97% capacity (796 spaces utilized); and
 - f. Findings of Fact (Final PUD Plan)
 - i. The Family Activity Center (Phase 4) is in conformance with the Comprehensive Plan and the Future Land Use Plan of the Village which identifies religious institutional uses for the Property, and conforms to the general planning policies and precedents of the Village;
 - ii. The Family Activity Center is a permitted use in the ER-1 PUD (Estate Residence) Zoning District;
 - iii. The Family Activity Center is designed, located and proposed to be operated and maintained so that the public health, safety and welfare will not be endangered or detrimentally affected;
 - iv. The Family Activity Center shall not substantially lessen or impede the suitability for uses and development of, or be injurious to the use and enjoyment of, or substantially diminish or impair the value of, or be incompatible with, other property in the immediate vicinity;
 - v. The Family Activity Center shall not be required to make donations in accordance with the Village's Donation Ordinance;
 - vi. Adequate utilities and drainage shall be provided for this use;
 - vii. Adequate parking and ingress and egress will be provided for this use so as to minimize traffic congestion and hazards in public streets;

CD Memo 16-149 August 1, 2016 Page 5

- viii. Adequate buffering and landscaping shall be provided to protect uses within the development and on surrounding properties. There shall be a sufficient mixture of grass, trees and shrubs on the site so that the proposed development will be in harmony with adjacent land uses.
- ix. There shall be reasonable assurance that, if authorized, this facility will be completed according to an appropriate schedule and adequately maintained.
- 2. The Final PUD Plan, Concept Plan, Phasing Plan, Traffic Study and the Village's Traffic Consultant's comments and additional background material is attached for your review.

rbg/attachments

x:\comdev\mem2016\149_baps_pc.docx

233 SOUTH WACKER DRIVE SUITE 6600 CHICAGO, ILLINOIS 60606 *t* 312.258.5500 *f* 312.258.5600 www.schiffhardin.com

June 26, 2015

BY HAND DELIVERY

Village President Kevin Wallace Members of the Board of Trustees 228 South Main Street Bartlett, Illinois 60103

Re: BAPS Chicago, LLC -- Request for Final PUD Plan Approval for

BAPS Mandir Phase 4

Dear President Wallace and Members of the Board of Trustees:

Schiff Hardin LLP represents BAPS Chicago, LLC ("<u>BAPS</u>"), the current owner of a tract of land comprised of approximately 38.95± acres that is located on the east side of Illinois Route 59 near in intersection of Illinois Route 59 and Army Trail Road in an unincorporated area of DuPage County (the "<u>Property</u>"), which was annexed to the Village of Bartlett by Ordinance No. 2012-71, pursuant to an Annexation Agreement approved by Ordinance No. 2012-70, and zoned by Ordinance No. 2012-72.

Description of Overall Property

The Property consists of the following large tracts (each comprised of multiple lots of record):

Mandir Site: Approximately 29.954 acres of the land is presently occupied by the BAPS Mandir, an architecturally significant, beautiful Hindu Temple, and associated cultural center, a residence for the priests and another small residence used from time to time to house volunteers/priests (the "Mandir Site"). It also contains a stormwater detention basin that was constructed with excess capacity to serve both the current structures and the future proposed structures on the Mandir Site and the Yogi Plaza Site (described in paragraph 2 below), as well as off-site areas tributary to the existing facility (approximately 2.28 acre feet of excess storm water capacity is contained in this facility). The Mandir Site has approximately 700 feet of frontage along Illinois Route 59 and is located approximately 1,000 feet south of the intersection of Illinois Route 59 and Army Trail Road. All planned future improvements and uses for the Mandir Site are consistent with and an expansion of the presently permitted religious institutional uses on the site. The zoning district into which the Mandir Site has been zoned upon annexation was the

ER-1 Estate Residence District, including a Special Use Permit for a Planned Unit Development ("<u>PUD</u>"). (See Section Three of Ordinance No. 2012-72) In addition, Section Six of Ordinance No. 2012-72 approved a Concept Plan for Phases 4 (for which final approval is now being sought in this Application), 5 and 6. Phase 4 is described below.

2. Yogi Plaza Site: Approximately 7.46 acres of the land ("Yogi Plaza Site") is presently mostly vacant (portion designated for Phase 5), although one small portion of the land (designated for Phase 6) contains a residence that is used from time to time by BAPS to house volunteers/priests. The Yogi Plaza Site is on the south side of Army Trail Road, approximately 725 feet east of Illinois Route 59, and has approximately 600 feet of frontage on Army Trail Road, which makes the site well-suited for a retail shopping center use. Section Two of Ordinance No. 2012-72 rezoned the Yogi Plaza Site into the B-3 Neighborhood Shopping Zoning District, which BAPS intends to redevelop for a commercial shopping center. Section Six B of Ordinance No. 2012-72 approved a Concept Plan for Phases 5 and 6.

Specific Plan Approval and Parking Relief Requests

Specifically the request on behalf of BAPS is for the Village of Bartlett (the "Village") to approve the Final PUD Plan for the Phase 4 development on the Mandir Site, and to grant it relief from the requirements of the Village's Zoning Code to allow the construction of fewer parking spaces than are normally required. The following describes the items BAPS is requesting the Village Plan Commission and Board review and approve.

1. Phase 4 Final PUD: Phase 4 will consist of a fourth building on the Mandir Site (the "Family Activity Center"), which will be constructed to mirror the existing Cultural Center building that was previously completed in Phase 1 in footprint, height and architectural style and appearance, and will be located to the north of the Temple so that both the Cultural Center and the new Family Activity Center flank the Temple in an aesthetically harmonious way. The Family Activity Center will house such uses as a gymnasium, family life center/auditorium (multi-purpose room), and meeting/conference or class rooms, and a small amount of office spaces to house the staff involved in the programming for the Family Activity Center. It will not house any residences. Some of the activities presently housed in the existing Cultural Center (Haveli), including the existing auditorium, will be relocated to the Family Activity Center in order to utilize the existing Cultural Center more efficiently for visitors to the BAPS Property. Please refer to the architect's rendering of the existing Cultural Center, Temple and proposed Family Activity Center for a perspective as to the appearance of the Project after completion of

the Phase 4 Family Activity Center. The Phase 4 PUD Plan shows the location for the Family Activity Center, which is in the same area designated for this building on the previously approved Concept Plans.

2. Modification of PUD to Allow Phase 3A Parking and No Additional Spaces: Final plans for the parking portions of Phase 2 on the Mandir Site were approved at the time of the Annexation Agreement, and that portion of the parking lot and related improvements have been completed (presently there are a total of 725 spaces on the Mandir Site), including related landscaping and lighting plans, all of which was completed. In addition to these improvements, Phase 3B which consisted of the connection of the Property to the Village water and sewer systems and removal of the existing septic field and system that served the Mandir Site (formerly located under the area designated for the Phase 3A portions of the parking lot) have been completed. Construction of the 96 additional Phase 3A parking spaces will be coordinated with the construction of the Phase 4 Family Activity Center so that they are completed by that date (final engineering for these spaces was approved at the time the Phase 2 final engineering was completed). Upon completion of these additional 96 parking spaces, the Mandir Site will contain 821 spaces in total (see Phase 4 Final PUD Plan).

BAPS is seeking approval of the Final Phase 4 PUD with a total of 821 spaces rather than the number required under the Village's Zoning Code. Due to the unique nature of the proposed Family Activity Center, at this time, BAPS does not have the precise number of spaces the Village's Zoning Code requires. It is waiting for the Village staff to advise BAPS as to the number of spaces the Village's Zoning Code will require after the staff's preliminary review of the Application and Plans submitted. However, BAPS does not expect additional passenger cars needing to be parked will be generated by the additional Phase 4 Building, due to the fact that the programming is primarily for children who will arrive with their parents, and many of the activities are currently housed in other existing buildings.

Short Rationale for Approvals Requested

As will be demonstrated at the public hearings and meetings that will be scheduled to review BAPS requests, the requests will meet the various standards established by the Village's Zoning Ordinance, and will enhance the quality of commercial development and growth of the Village. Each of the standards to be met when the Village reviews a final PUD and a request for a modification of the type being requested here (required number of parking spaces). BAPS has provided a traffic study dated June 25, 2015 conducted by Gewalt Hamilton Associates, Inc. ("GWA") which demonstrates that, except during certain peak times, the 821

spaces will be more than adequate to serve the needs of BAPS even after construction of the Family Activity Center. Even during the peak time periods noted in GWA's traffic study, the 821 spaces that will be provided on-site after the completion of the Phase 4 Building and the Phase 3A spaces, will exceed anticipated demand for more than 7 years. There is no certainty as to whether the growth that has occurred in the past, which GWA relied upon to draw its conclusion as to the capacity, will continue. During those few times where BAPS existing parking spaces are not sufficient (on weekends or legal holidays), BAPS has traditionally obtained the right to use additional parking from the nearby high school, golf course or churches, depending on the needs, and shuttle buses are provided by BAPS to bring people into and out of the Property.

The Mandir Site is large and heavily landscaped with front and side yards well in excess of those required under the Zoning Code – even exceeding those required for buildings that are the height of the Temple and the Cultural Center. The architecture is stunningly unique and draws many visitors from the Chicago metropolitan area and around the world. Approving the development of the Phase 4 Family Activity Center for the Property will complete the symmetry that was envisioned by BAPS for the Mandir Site (see concept elevation plan submitted) and the types of uses planned for the Family Activity Center will allow BAPS to provide for additional programming for its members and guests and enhance the health, safety, morals and general welfare of the Village. Taken together, the entire Project, including its existing and proposed Phase 4 Family Activity Center uses, is compatible with and consistent with the mix of residential and commercial uses in the vicinity.

The existing and proposed uses for the Mandir Site are also consistent with the Village's Comprehensive Plan, as well as the Preliminary PUD approved by the Village in 2012. The Mandir Site was designated by the Village in 2004 for Municipal/Institutional uses, and the existing and proposed future uses for the Mandir Site are institutional – a religious institution.

The Project will not in any way impede or injure the use of other properties in the area. The Mandir Site is already partially developed and the proposed future buildings and other projects are within the site itself and set back significant distances from the neighboring properties. Beautifully landscaped perimeters will be added adjacent to the additional parking spaces added as part of Phase 2 for the Mandir Site, and with the construction of the Phase 4 Family Activity Center, additional landscaping will be added to the Mandir Site (see Land scape Plan submitted). The location of the Property is appropriate for the current and planned uses, as it fronts on two major streets/highways near their intersection, but far enough away that the drives into the Property do not interfere with traffic on these roadways. The developments are also of a size and scale that they will not impair or injure the development or use of other nearby properties.

BAPS has more than a decade-long track record of operating and maintaining the Mandir Site to the highest standards. Immaculate landscaping, beautiful and unique architecture and careful stewardship of the land and all of the other structures and improvements on the Property demonstrate the commitment BAPS has and will continue to focus on high-quality maintenance and care for the facilities on the Mandir Site.

Additional testimony and evidence addressing the standards to be met will be provided at the public hearings. Such testimony and evidence will demonstrate the existing and proposed development will fully comply with the Village's requirements.

Summary of Enclosures

Enclosed please find the Development Application signed on behalf of BAPS, along with the Development Application Packet Checklist that has been annotated as to the items included (or not included and the reasons why). BAPS looks forward to working with the staff and appointed and elected officials of the Village to obtain the approvals that are required for BAPS to take the next step to completing the development of the Mandir Site.

We would also appreciate it if you could initiate the Village procedures for processing the Development Application. Please let me know if you need additional information.

Very truly yours,

Janet M. Johnson

Enclosures

cc: Yagnesh Patel

BAPS Mandir Management

Thakor Patel Roberta Grill

CH2\16812677;2

Other			
	200		

FINDINGS OF FACT (Standards)

The Village of Bartlett Zoning Ordinance requires that certain findings of fact, or standards, must be met before a special use permit, variation, site plan or planned unit development may be granted. Each application for a hearing before the Plan Commission or Zoning Board of Appeals for a special use, variation, site plan or planned unit development must address the required findings of fact for each particular request. The petitioner should be aware that he or she must present specific testimony at the hearing with regards to the findings. (On the following pages are the findings of fact, or standards, to be met. Please respond to each standard, in writing, as it relates to the case.)

PLEASE FILL OUT THE FOLLOWING FINDINGS OF FACT AS THEY

RELATE TO YOUR CASE.

FINDINGS OF FACT FOR PLANNED UNIT DEVELOPMENTS

Both the Plan Commission and Village Board must decide if the requested Planned Unit Development meets the standards established by the Village of Bartlett Zoning Ordinance.

The Plan Commission shall make findings based upon evidence presented on the following standards: (Please respond to each of these standards in writing below as it relates to your case. It is important that you write legibly or type your responses as this application will be included with the staff report for the Plan Commission and Village Board to review.)

1. The proposed Planned Unit Development is desirable to provide a mix of uses which are in the interest of public convenience and will contribute to the general welfare of the community.

The location for the Phase 4 Building was approved under Village Ordinance # 2012-72.

See Preliminary/Final PUD Plan BAPS Phases 1, 2 and 3A prepared by SPACECO, Inc. dated September 30, 2011,

last revised May 25, 2012 ("Approved PUD") attached as Exhibit D to Ordinance #2012-72 and the Phasing Plan BAPS Temple and

Yogi Plaza prepared by SPACECO, Inc. dated September 30, 2011, last revised May 25, 2012 ("Approved Phasing Plan").

See also Phase 4 Concept Elevation attached as Exhibit F-1 to Village Ordinance # 2012-72. The uses planned are for family friendly activities and religious instruction classrooms.

2. The Planned Unit Development will not under the circumstances of the particular case be detrimental to the health, safety, morals, or general welfare of persons residing or working in the vicinity or be injurious to property value or improvement in the vicinity.

The location for the Phase 4 Building was approved under Village Ordinance # 2012-72 via

the Approved PUD (Exhibit D), the Approved Phasing Plan (Exhibit E) and the Phase 4 Concept Elevation attached as Exhibit F-1 to

Village Ordinance # 2012-72. There is no on-street parking on any of the highways and roads surrounding the Mandir

Site (the 29.95 +/- acre site of which the Phase 4 tract of land is a part), the peak time periods for use of the Phase 4 building

will be evenings and weekends. It is intended to be a facility for use by families, guests and worshippers at the BAPS Mandir. The building will not be very visible from most neighbors due to existing landscaping, distance from property lines and land elevation.

3. The Planned Unit Development shall conform to the regulations and conditions specified in the Title for such use and with the stipulation and conditions made a part of the authorization granted by the Village Board of Trustees.

The Preliminary PUD and special use in the Village's ER-1 Zoning District for the Phase 4

Building was approved under Village Ordinance # 2012-72 ("Special Use Permit"). The only variation requested in this Application

is to approve a reduction in the required number of parking spaces because the same individuals who attend worship services

and other events at the existing Phase 1 Buildings are expected to use the Phase 4 Building on weekends, and the other

peak times for use of the Phase 4 Building will be evenings when there are fewer worshippers at the Mandir. Another key reason for building the Phase 4 Building is to alleviate crowding of existing facilities at the weekend peak times (i.e., to spread out the current attendees among more square feet), which will not require additional parking spaces.

4. The proposed uses conform to the Comprehensive Plan and the general planning policies of the Village for this parcel.

The proposed uses for the Phase 4 Building (family life center) were approved in concept under Village Ordinance # 2012-72 and are consistent with a religious institutional uses allowed under. the Special Use Permit. The proposed uses for the Phase 4 Building were also approved pursuant to Paragraph 14.B of the Annexation Agreement approved under Village Ordinance # 2012-70 ("Annexation Agreement").

5. Each of the proposed uses is a permitted or special use in the district or districts in which the Planned Unit Development would be located.

The Phase 4 Building proposed uses are consistent with those allowed under the Special

Use Permit, and are consistent with the uses permitted under Paragraph 14.B of the Annexation

Agreement, which approved the use as a "family activity center, including all or any of the following uses:

gymnasium, auditorium, meeting rooms and other uses consistent with those appropriate for

family activities offered to BAPS' members and the community."

6. The Planned Unit Development is designed, located and proposed to be operated and maintained so that the public health, safety and welfare will not be endangered or detrimentally affected.

The Phase 4 Building location is as approved under Village Ordinance # 2012-72 and the

Annexation Agreement. See also responses to items 2, 3 and 5 above. Providing a secure location where families can participate in age-appropriate activities either together or at the same time will benefit the health, safety and welfare of the entire community.

7. It shall not substantially lessen or impede the suitability for permitted use and development of, or be injurious to the use and enjoyment of, or substantially diminish or impair the value of, or be incompatible with, other property in the immediate vicinity.

The location of the Phase 4 Building hundreds of feet inside the boundaries of a parcel exceeding 29 acres in size will not affect the future development or use of the surrounding properties. Its height will be shorter than that of the Mandir and its position within the overall Mandir site is such that it will not be readily visible outside the boundaries of the Mandir site, and those boundaries

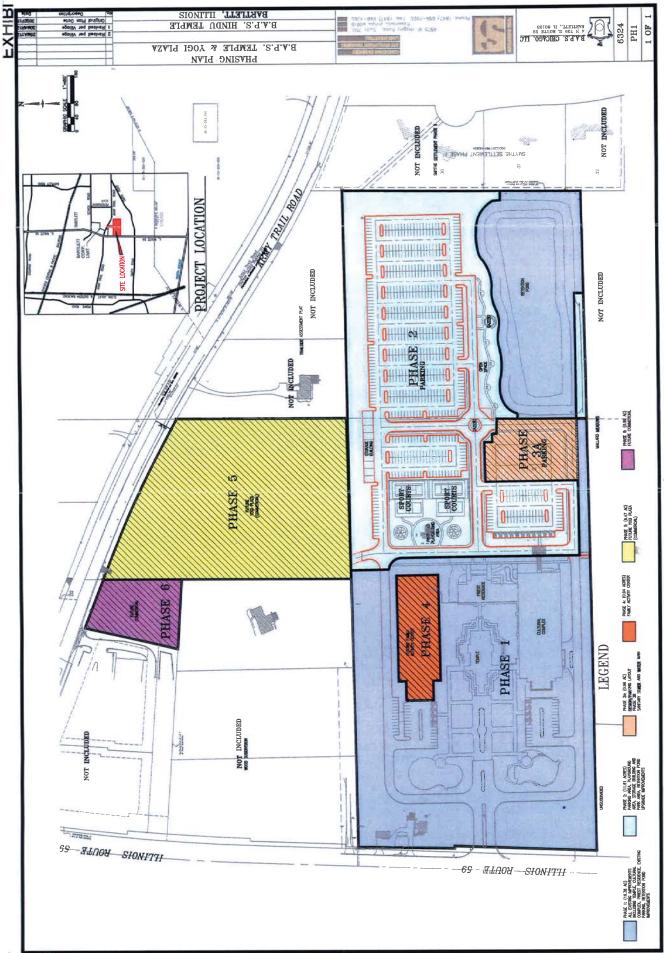
closest to the Phase 4 Boundaries are currently planted with numerous trees and other landscaping.

- 8. Impact donations shall be paid to the Village in accordance with all applicable Village ordinances in effect at the time of approval.
 - Per Paragraph 2.H of the Annexation Agreement approved and recorded under Village

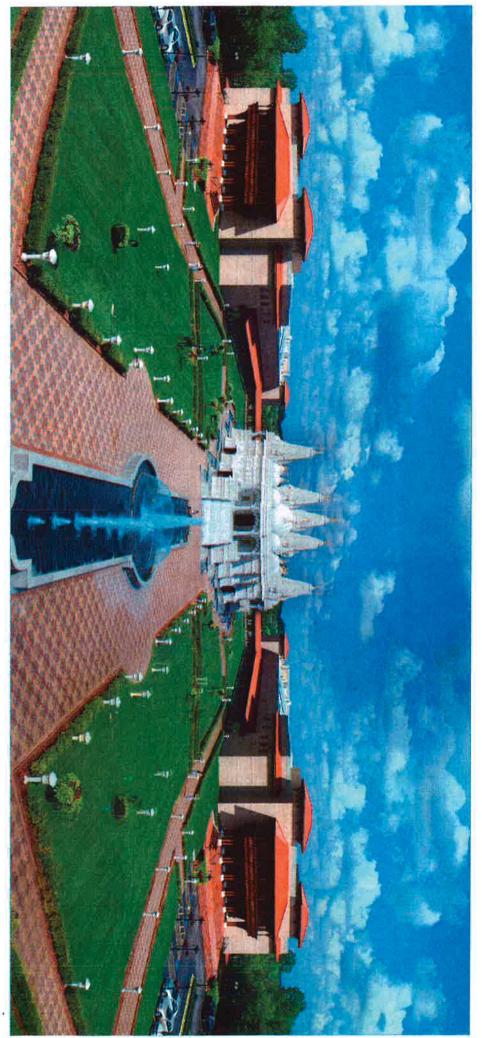
 Ordinance # 2012-70, impact fees are only required for new commercial buildings

 developed in Phases 5 and 6. Accordingly, only normal building permits and plan review fees

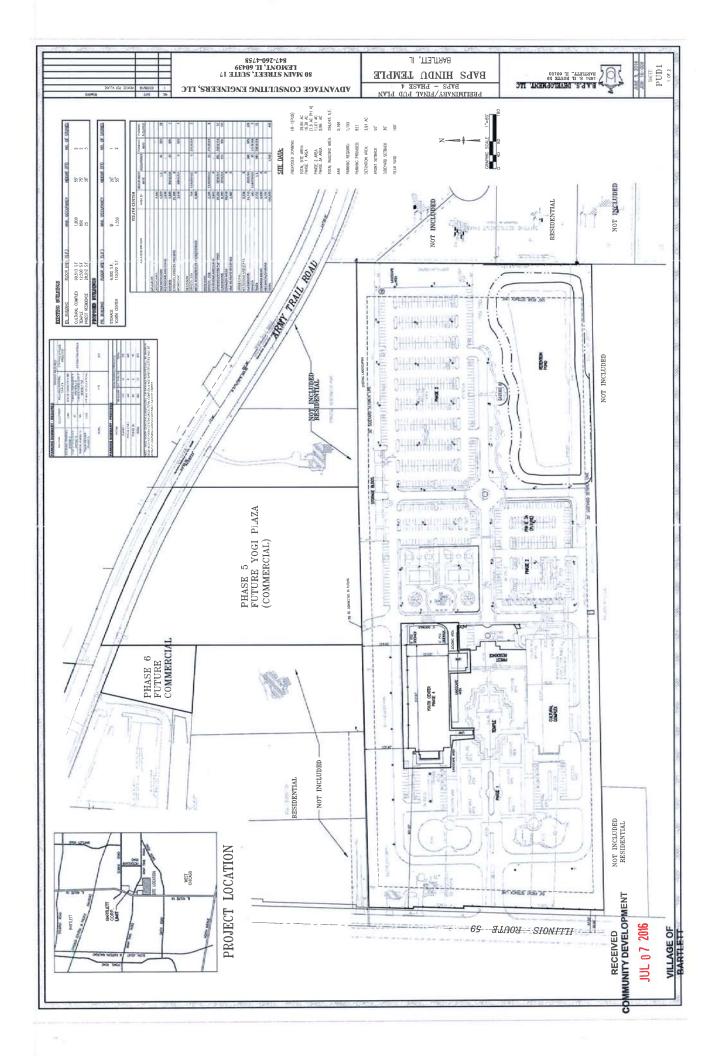
 are required for the Phase 4 Building and any other buildings on the Mandir Property.
- 9. The plans provide adequate utilities, drainage and other necessary facilities.

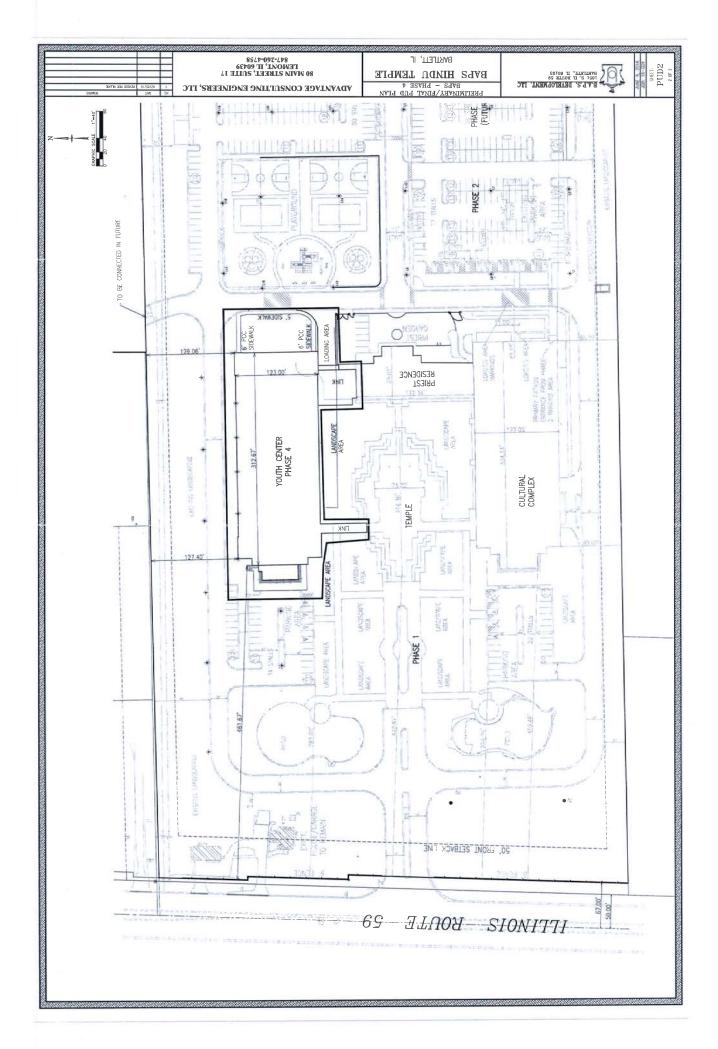

 The drainage and other utilities, including water, sanitary sewer and storm water detention have been previously constructed as part of Phases 1 through 3, other than customary service lines to serve the Phase 4 Building. The Storm Water Management Report for PHases 1, 2 and 3A prepared by SPACECO, Inc. dated October 2011 and last revised June 27, 2012 has been updated by the storm water calculations on the Preliminary Engineering Plan dated June 26, 2015 prepared by VantagePoint Engineering.
- 10. The plans provide adequate parking and ingress and egress and are so designed as to minimize traffic congestion and hazards in the public streets.
 Parking to serve the Phase 4 Building has been provided in Phases 2 and 3. Access to the Phase 4 Building site was provided in Phase 1. A variance is being sought to allow existing and new Phase 3A parking (previously engineered, but to be constructed at the same time as Phase 4) to suffice. A traffic impact study as required pursuant to Paragraph 14.B of the Annexation Agreement prepared by Gewalt Hamilton Associates, Inc. dated June 15, 2015 is attached.
- 11. The plans have adequate site area, which area may be greater than the minimum in the district in which the proposed site is located, and other buffering features to protect uses within the development and on surrounding properties.

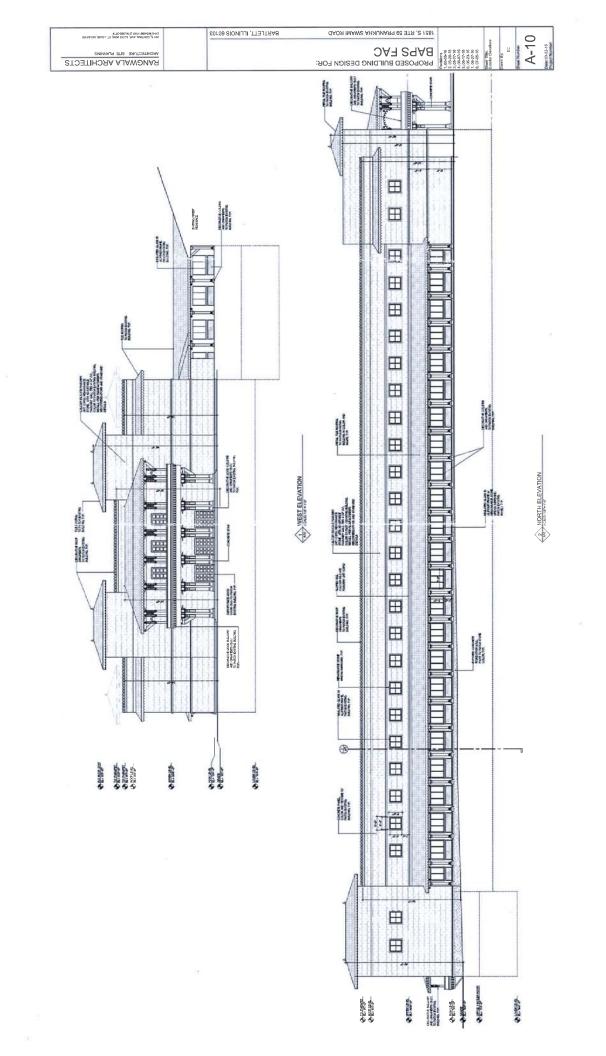
The Phase 4 building site is part of a large PUD comprising approximately 37.41 acres, of which approximately 29.95 acres (the "Mandir Property" as defined in the Annexation Agreement) are within the ER-1 Zoned Portion that includes the approximately 1.53 acre Phase 4 building site. The size of the Mandir Property exceeds the minimum acres required for the approved Special Use in the ER-1 Zoning District under Village Ordinance # 2012-72.

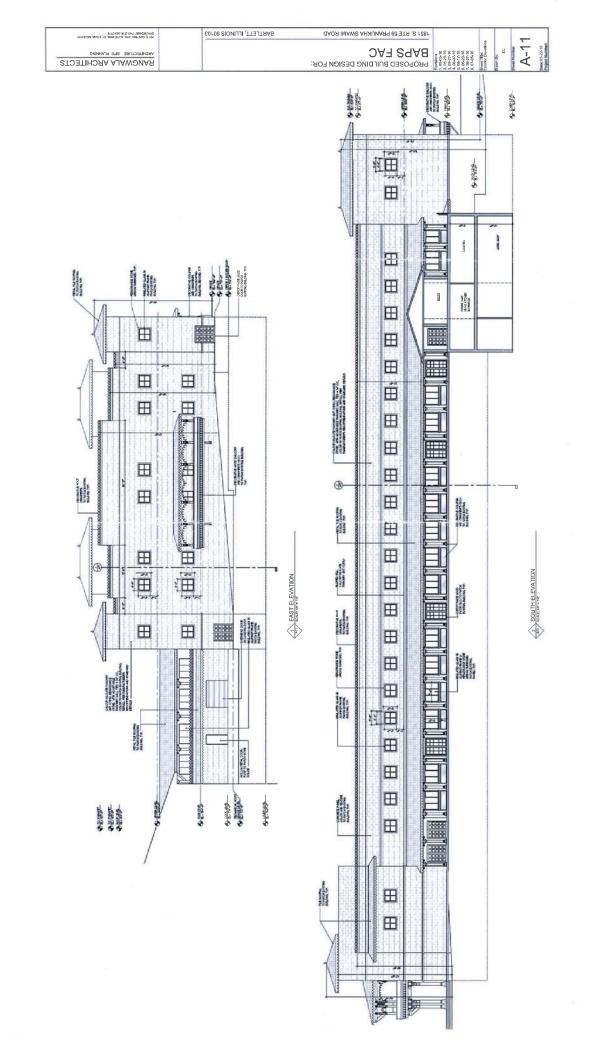

Case #2015-13

BAPS-Phase 4

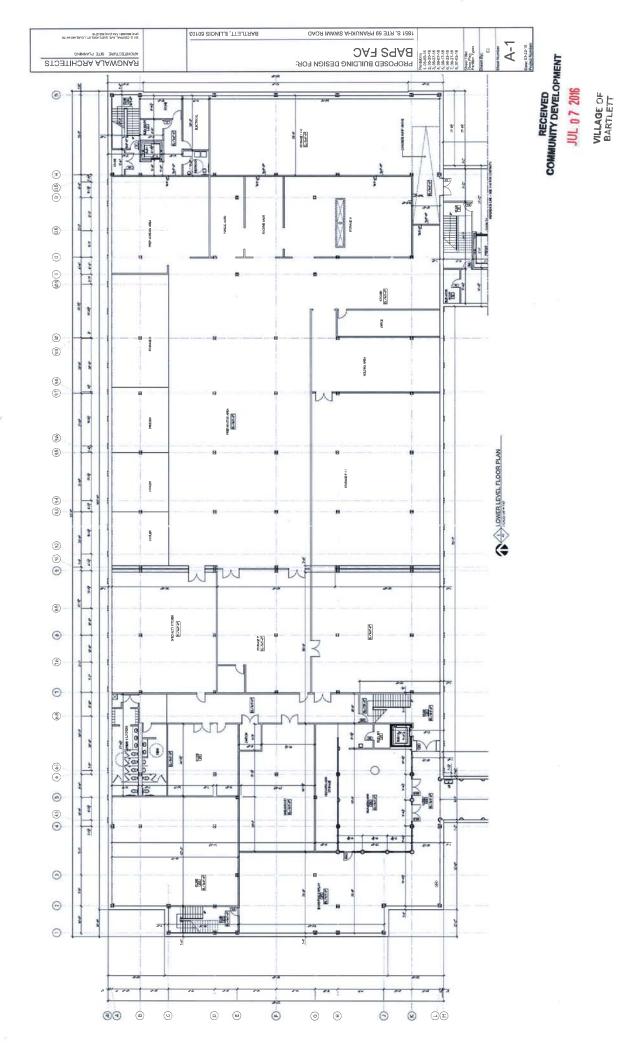


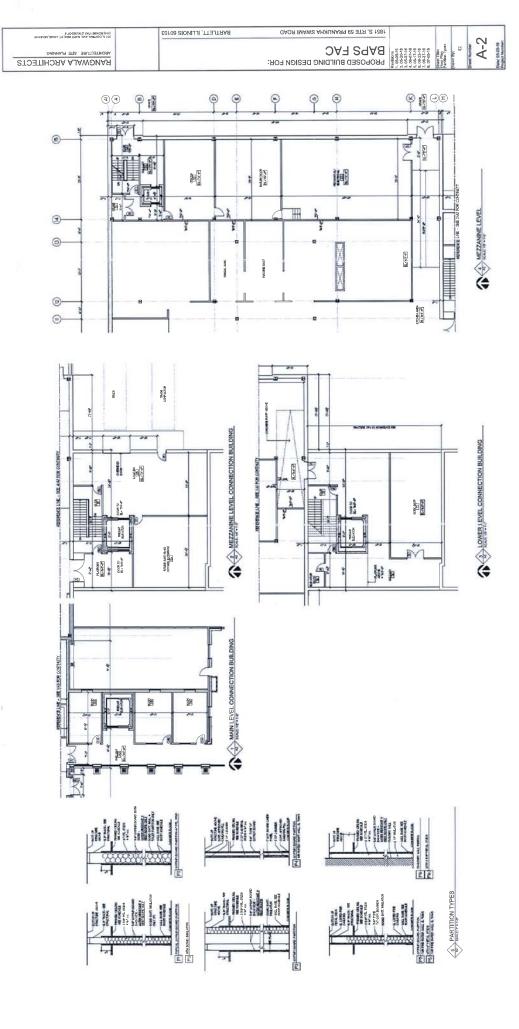


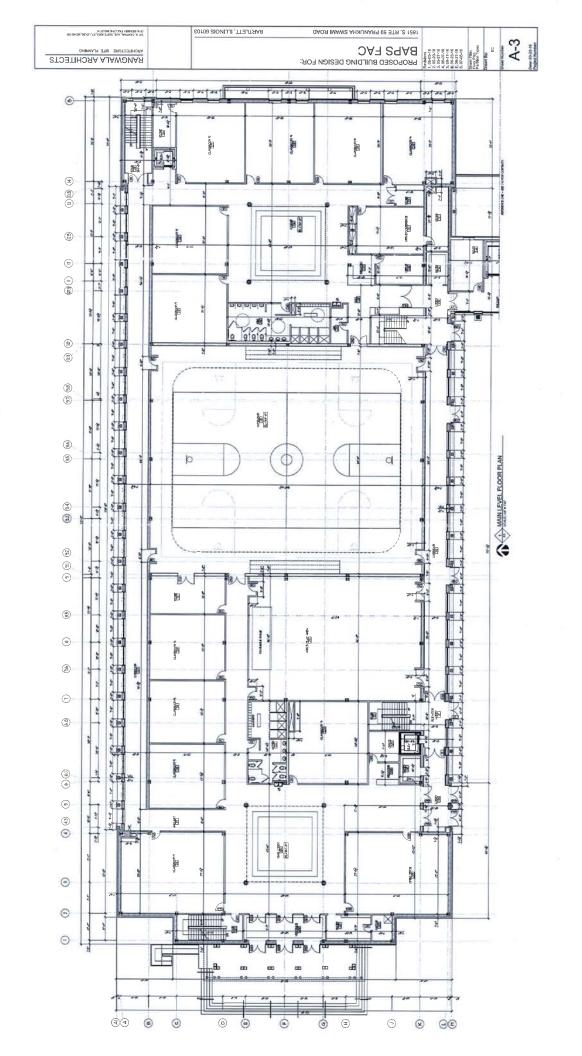

Ш

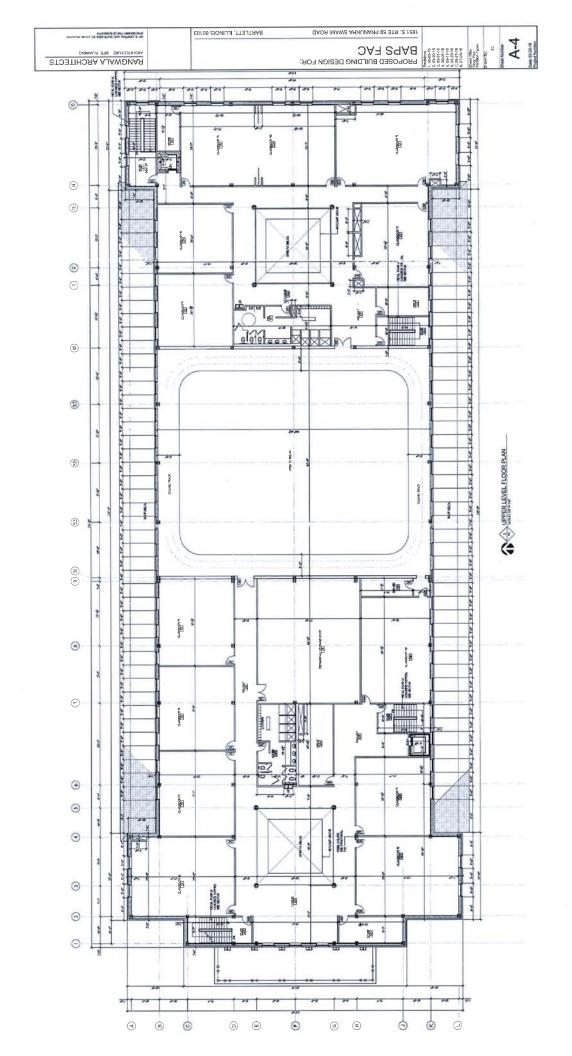


F-7 TIBIHX3









BAPS CHICAGO, U.C 4 N. 739 IL ROUTE 59 BARTLETT, IL 60103 BAPS Hindu Temple
Bartlett, IL
AMDSCAPE PLAN 1 of 1 AND DESIGN LIMITED AND DESIGN LIMITED 416 CONTROL OF 12 CO REVISIONS ROJECT DECIDUOUS AND EVERGREEN SHRUBS N.T.S. PERENNIALS AND GRASSES N.T.S. DECIDUCUS TREES Existing COMMENTS 3 Gal. 3 Gal. 3 Gal. 3 Gal. 5 S.Y. C.Y. Phase 4 Addition LANDSCAPE PLAN
7 SEE THIS SHEET COMMUNITY DEVELOPMENT LOCATION PLAN NTS JUL 0 7 2016 VILLAGE OF BARTLETT

Traffic Impact and Parking Study

To:

Mr. Thakor Patel

BAPS Development, Inc.

From:

Lynn M. Means, P.E., PTOE

Senior Transportation Engineer

Tim Doron

Director of Transportation Planning

Date:

June 15, 2015

Subject:

Proposed Family Activity Center

BAPS Hindu Temple

1851 South Illinois Route 59

Bartlett, Illinois

CONSULTING ENGINEERS

625 Forest Edge Drive, Vernon Hills, IL 60061 Tel 847.478.9700 Fax 847.478.9701

www.gha-engineers.com

RECEIVED **COMMUNITY DEVELOPMENT**

JUN 2 9 2015

VILLAGE OF BARTLETT

Part I. Introduction and Project Context

Gewalt Hamilton Associates, Inc. (GHA) has conducted a Traffic Impact and Parking Study for the above captioned project. The BAPS Hindu Temple (site) currently operates on the approximately 30 acre site located along the east side of Illinois Route 59 (Sutton Road), south of Army Trail Road (DuPage County Route 11), in Bartlett, Illinois. The proposed expansion of the site includes the construction of a two-story, approximately 93,500 square-foot Family Activity Center (FAC). It will also add 96 parking spaces, bringing the site total to 821 spaces.

The following summarizes our findings and provides various recommendations for your consideration. Exhibits and Appendices referenced are located at the end of this document.

Part II. Background Information

Site Location Map and Roadway Inventory

Exhibits 1 and 2 provide a location map and aerial photography of the site vicinity. Pertinent comments to the adjacent roadways include:

- IL Route 59 is a north-south principal arterial, providing a five lane cross-section (two through lanes in each direction and a center turn lane/median). At its unsignalized intersection with the site access driveway, IL Route 59 provides a left-turn lane in the southbound direction; northbound right-turns are shared with the through movements. IL Route 59 is under the jurisdiction of the Illinois Department of Transportation (IDOT) with a posted speed limit of 45 miles per hour.
- The average daily traffic (ADT) on IL Route 59 in the vicinity of the site is 33,300 vehicles with 3,450 trucks (10.4%).

• A single access point on IL Route 59 serves the BAPS Hindu Temple, providing two exiting lanes (a separate right- and left-turn lane) and two inbound lanes, operating under Stop sign control.

Current Site Characteristics

Information on prayer services and classes was provided by the BAPS Hindu Temple staff.

- Five scheduled prayer (Arti) services are held seven days a week at 6:00 AM, 7:30 AM, 11:15 AM, 7:00 PM and 8:30 PM, as well as Sunday school classes from 11:00 AM to 3:00 PM. The service with the highest attendance occurs on Sunday at 7:00 PM.
- Weekday (Monday through Friday) attendance for the aforementioned prayer services is, on average,
 15, 25, 30, 100 and 10 persons, respectively, including both adults and children.
- On Saturday, attendance for the 6:00 AM, 7:30 AM, 11:15 AM, 7:00 PM and 8:30 PM services is, on average, 15, 30, 200, 200 and 25, respectively, again including both adults and children.
- On Sunday, attendance for the aforementioned services is 15, 30, 250, 1,400 and 50, respectively, including both adults and children. An additional 200 to 300 persons are typically present on site during the Sunday peak service.
- Parents typically drop off their children prior to 11:00 AM for Sunday school and return after 4:00 PM for the 7:00 PM assembly.
- Classes for girls are held in the lower level of the Haveli (Cultural Complex), with the space currently too small to accommodate classroom needs.
- Classes for boys are currently held in the Priest residence.
- Assembly for women and girls (Sabha) is currently held in the main assembly hall prior to the regular Sunday assembly.
- The dining area located in the Haveli is too small to accommodate the current Sunday activities.
- The site is also open to visitor from 9:00 AM to 7:00 PM daily throughout the year. On weekdays, typical
 visitor attendance is 200 persons, while Saturday and Sunday visitor attendance ranges from 300 to 600
 persons.

The site currently provides 725 parking spaces.

Existing Parking Demand and Vehicle Occupancy

Exhibit 3 graphically depicts the parking areas surveyed. GHA conducted a parking demand survey on Sunday, May 3, 2015 to determine the existing site parking characteristics. The parking demand was recorded every hour from 3:00 to 9:00 PM. This time period coincides with the scheduled services and the anticipated peak arrival and departure. Exhibit 4 presents a summary of the parking survey results. As shown on Exhibit 4, the peak parking demand occurred at 6:00 PM, with 637 spaces occupied, representing approximately 88 percent of the available parking supply (725 spaces).

In an effort to determine the average occupancy of vehicles accessing the site, a count of the worship attendance for the peak service was conducted. The attendance count was performed by BAPS staff and included all staff and visitors (including the service, education and children/youth activities) on campus. On Sunday, May 3, 2015, approximately 1,400 people, including children, were present in the assembly hall and

300 people located in other areas of the campus, for a total of 1,700 people. Based on the aforementioned peak parking demand of 637 vehicles, the vehicle occupancy rate was determined to be 2.67 persons per vehicle (attendance divided by demand = 1,700/637 = 2.67).

Existing Traffic

Exhibit 5 summarizes the existing Sunday evening, weekday morning and weekday evening peak hour traffic volumes. Peak period traffic turning movement counts were conducted by GHA on Sunday, May 3, 2015 from 3:00 to 9:00 PM and on Tuesday, May 5, 2015 from 7:00 to 9:00 AM and 4:00 to 6:00 PM. The observed Sunday worship entering (pre-service) and exiting (post-service) peak hours occurred from 4:00 to 5:00 PM and 7:15 to 8:15 PM, respectively, while the weekday morning and evening peak hours occurred from 7:00 to 8:00 AM and 4:45 to 5:45 PM, respectively. Exhibit 5 also provides the ADT 24-hour volume along IL Route 59 from 2013 as published by IDOT on their website www.gettingaroundillinois.com.

No unusual activities (e.g. roadway construction, or inclement weather) were observed during our counts that would be expected to impact traffic volumes or travel patterns in the vicinity. Summaries of the existing traffic counts can be found in Appendix I.

2020 No-Build (Non-Site) Traffic

Exhibit 6 summarizes the 2020 No-Build Sunday evening, weekday morning and weekday evening peak hour traffic volumes. In accordance with IDOT requirements, future traffic volume conditions were developed for the year 2020, build-out plus five years. For the purpose of this study and based on a review of historical IDOT traffic volumes and recent studies performed in the area, traffic volumes along the roadways surrounding the site are assumed to experience an overall annual, compounded growth rate of approximately three percent per year. Accordingly, the 2020 No-Build peak hour traffic volumes were developed by applying a three percent compounded annual growth rate to the existing traffic (*Exhibit 5*).

Part III. Traffic Evaluation

Future Site Characteristics

Exhibit 7 depicts the proposed site plan. As shown, the development consists of the construction of a two-story, approximately 93,500 square-foot FAC on the north side of the Mandir (place of worship and prayer). It also includes an expansion to the existing parking facilities, adding 96 parking spaces, bringing the site total to 821 spaces. Access to the site is provided via one driveway on IL Route 59. Additional access to the site via Army Trail Road may be provided when future expansion and/or growth in membership warrants.

The proposed expansion is not anticipated to be a significant generator of new site traffic, but to serve the current site uses and demand. As previously indicated, the girls classrooms are overcrowded, the boys classes are being held in the priest's residence, the dining area is too small to accommodate the Sunday activities and the girls and ladies Sabha is held in the main assembly hall, which often must be rushed to get the hall ready for regular Sunday assembly. The new facility will provide extra space for the aforementioned uses and permit the current spaces to be used for their intended use. A gymnasium is also proposed within

the FAC, which will be used by boys and girls following their classes and before Sunday assembly. The FAC is not anticipated to be used except on Sundays, other than for storage or minimal activity.

Exhibit 8 – Part A tabulates the traffic generation calculations for the proposed development. Typically, the trip generation rates published by the Institute of Transportation Engineers (ITE) in the 9th Edition of the Manual *Trip Generation* are used to determine the anticipated traffic from a development; however, because the expansion is proposed to serve the existing use and not a source of new site, local membership data was use instead. Based on historical data, the BAPS Hindu Temple has been experiencing a membership growth of approximately 3.5 percent annually. The membership growth calculations are provided in *Appendix II*.

Exhibit 8 – Part B provides the anticipated trip distribution. This was based on existing site travel patterns. As shown, majority of the site traffic arrives and departs to the north.

Site and Total Traffic Assignments

Exhibit 9 illustrates the site traffic assignment which is based on the traffic characteristics summarized in Exhibit 8 (traffic generation and trip distribution) and assigned to the area roadways. Four peak hours are shown, including the weekday morning and evening street peak traffic and the Sunday evening worship entering (pre-service) and exiting (post-service) peak traffic.

Site traffic and 2020 No-Build traffic (see *Exhibits 9* and *6*, respectively) were combined to produce the 2020 Total traffic, which is illustrated on *Exhibit 10*.

As previously stated, the FAC will not be a significant generator of traffic, increases in traffic are only anticipated with regular membership growth. As shown on *Exhibits 8 and 9*, the development will have almost a negligible impact on operations along IL Route 59. During the weekday morning and evening peak hours virtually no site traffic will be generated, with one additional vehicle every 7 to 15 minutes. During the Sunday pre- and post-service peak periods, the increase in traffic represents, on average, one additional vehicle per minute.

Future Parking Demand

Exhibit 11 summarizes the future on-site parking and attendance characteristics. As previously indicated, the existing total parking demand observed on Sunday was 637 vehicles, occurring at 6:00 PM. Therefore, the existing parking demand can be accommodated within the proposed 821 parking spaces on site.

Based on historical data, the BAPS Hindu Temple has been experiencing an annual, compounded growth in membership of approximately 3.5 percent. As membership and attendance of assembly services grow, the occupancy of the on-site parking will also increase. The proposed 821 parking spaces provides for an increase in parking of approximately 29 percent above the current peak parking demand. Given the historical growth in membership, the proposed on-site parking supply will accommodate the peak parking demand on-site for just beyond seven years.

Capacity Analyses

Capacity analyses are a standard measurement in the industry that identifies how a particular intersection operates. *Exhibit 12* – Part A lists the analysis parameters, as published in the Transportation Research Board's (TRB) 2010 Highway Capacity Manual (HCM). They are measured in terms of level of service (LOS). LOS A is the best rating, with LOS F being the worst. LOS C is often considered acceptable for design purposes and LOS D is usually considered as providing the lower threshold of acceptable operations. LOS E and F are usually considered unacceptable.

For Two Way Stop Controlled (TWSC) intersections, LOS is reported for conflicting movements on the major street (i.e. left turns onto the minor approach) and for each movement on the stopped approach. Approach "control delay" is also reported in seconds per vehicle.

Exhibit 12 - Part B summarizes the intersection capacity analysis results. As shown, all approaches at the study intersection operate at or above an acceptable LOS D before and after the expansion during all four peak hours studied. It should be noted, the westbound left-turn from the site access onto IL Route 59 southbound currently operates at a LOS E and a LOS E/F under future conditions, with the anticipated traffic growth within the area and the addition of the site-generated traffic, during the weekday morning, weekday evening and Sunday worship entering (pre-service) peak hours. The delay experienced by this movement is typical for a minor street intersection with a major street with heavy through volumes. Left-turning vehicles have to wait longer to find an acceptable gap in both north and southbound traffic on IL Route 59.

Capacity analysis summary printouts are provided in Appendix III.

Gap Study

Exhibit 13 provides the results of a gap study performed at the site access location with IL Route 59. A gap study was conducted by GHA on Sunday, May 3, 2015 from 3:00 to 9:00 PM for the existing five-lane cross section (two through lanes in each direction and a center turn-lane) on IL Route 59. The data collected from the gap study is included in *Appendix IV*.

Gap studies are conducted to determine the duration and frequency of gaps, or interruptions in the through traffic stream, which permits vehicles on side streets site access to turn and enter the through traffic stream or vehicles on the mainline to cross the traffic stream to access a side street. The following three types of gaps were analyzed:

- The number of gaps in the northbound traffic stream on IL Route 59 to provide for a southbound left-turn
 movement from IL Route 59 onto the site access eastbound (Exhibit 13 Part A).
- The number of gaps in the northbound traffic stream on IL Route 59 to provide for a westbound right-turn movement from the site to northbound IL Route 59 (Exhibit 13 Part B).
- The number of gaps in the combined northbound and southbound traffic streams on IL Route 59 to provide for a westbound left-turn movement from the site to southbound IL Route 59 (Exhibit 13 – Part C).

During the critical Sunday peak periods, the types of vehicles performing the above movements is passenger cars only. A minimum clearance time (critical gap) of 6.0 seconds, 7.5 seconds and 8.5 seconds is required for one single passenger car to make a left-turn into the site, right-turn out of the site and a left-turn out of the site, respectively. The minimum timeframe between the departure of one vehicle making a left-turn into the site, right-turn out of the site and a left-turn out of the site and the departure of the next vehicle using the same gap (follow-up time) is 2.2 seconds, 3.3 seconds and 3.5 seconds, respectively.

The available gaps, which were identified by the data collection, were measured against the required amount of time for each movement, as described above. The following summarizes the results during the critical peak hour, as shown on *Exhibit 13 – Part D:*

- Southbound left-turns into the site: 261 required, 284 gaps available during the Sunday worship entering (pre-service) peak hour.
- Westbound right-turns out of the site: 424 required, 515 gaps available during the Sunday worship exiting (post-service) peak hour.
- Westbound right-turns out of the site: 25 required and 46 available during the Sunday worship entering (pre-service) peak hour and 107 required, 164 gaps available during the Sunday worship exiting (post-service) peak hour.

Given the historical growth in membership, the available gaps within the existing IL Route 59 northbound and southbound traffic stream will accommodate the Sunday pre-service and post-service peak hour traffic volumes for just beyond seven years.

Part IV. Recommendations and Conclusions

Based on GHA's data collection, review and analysis, the proposed Family Activity Center and expansion of on-site parking at BAPS Hindu Temple will be effectively served by the existing roadway network and site access system. The existing access system and roadway lane configurations will continue to effectively serve the projected Sunday pre-service and post-serve peak hour traffic volumes, as well as the weekday morning and evening street peak hour traffic volumes. The proposed expansion to 821 parking spaces on-site will initially accommodate the existing parking demand of 637 vehicles and future (year 2020) peak parking demand of 757 vehicles. However, given the historical growth in membership, the proposed on-site parking is expected to be fully utilized in seven to eight years. At this seven to eight year timeframe, the Sunday pre-service and post-service peak hour traffic volumes are anticipated to exceed the available gaps within the IL Route 59 northbound and southbound traffic stream.

Accordingly, at that time, consideration should be given to expanding the parking supply on-site to accommodate the projected parking demand and/or implement measures to improve vehicle occupancy (rideshare) or to shift attendance to less attended Sunday service. Also at this time, due to the anticipated limited availability of gaps in the IL Route 59 traffic stream, consideration should be given to providing police detail during the Sunday pre- and post-service peak periods (3:00 to 9:00 PM) to facilitate traffic entering and exiting the site (operating similar to traffic signal control) or a second site access to the site should be provided onto Army Trail Road.

Part V. Technical Addendum

The following Exhibits and Appendices were previously referenced. They provide technical support for our observations, findings and recommendations discussed in the text.

Exhibits

- 1. Site Location Map
- 2. Aerial Location Map
- 3. Parking Survey Locations
- 4. Parking Occupancy Survey
- 5. Existing Traffic
- 6. 2020 No-Build Traffic
- 7. Site Plan
- 8. Traffic Characteristics
- 9. Additional Site Traffic
- 10. 2020 Total Traffic
- 11. Project Parking Characteristics
- 12. Capacity Analysis
- 13. Gap Analysis

Appendices

- I. Traffic Count Summaries
- II. Membership Growth Calculations
- III. Capacity Analysis Worksheets
- IV. Gap Study Data

Technical Addendum

Exhibits

Proposed Expansion BAPS Hindu Temple – Bartlett, IL

Exhibit 1 Location Map

Proposed Expansion BAPS Hindu Temple – Bartlett, IL

Exhibit 2
Aerial Photo

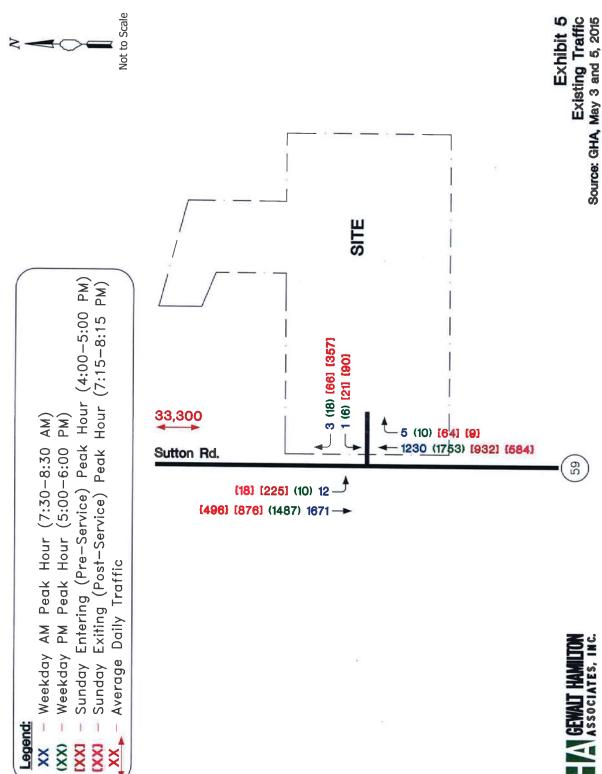
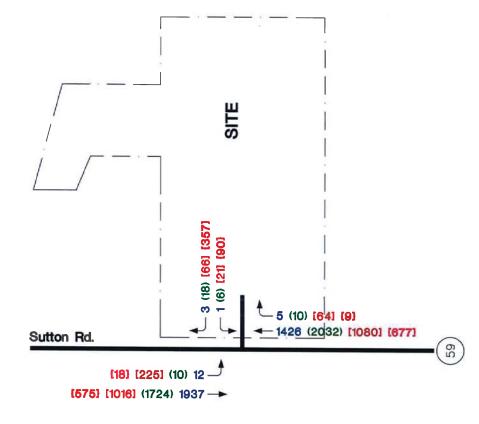

Proposed Expansion BAPS Hindu Temple - Bartlett, IL

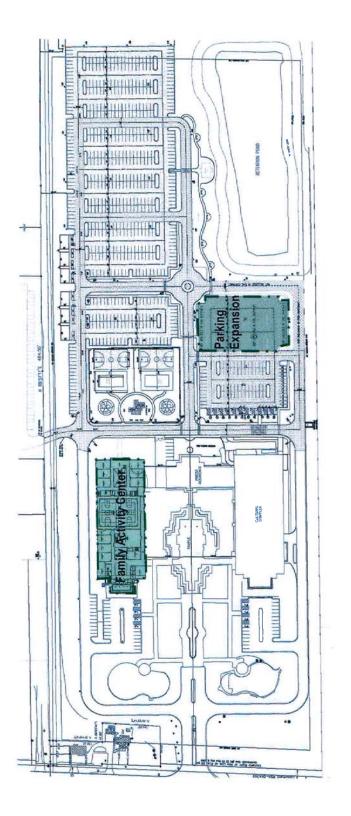
Exhibit 3 Parking Survey Locations

	Mq 00:6	0	0	0		20		18	40	%9
	Mq 00:8	7	0	4		31	9	54	103	14%
	Mq 00:7	39	0	20	8	11	#	427	577	80%
	Mq 00:9	46	က	19	6	76	Ŧ	480	637	%88
	Mq 00:3	4	4	19		76	#	426	583	%08
/ey ois	Mq 00:4	44	4	19	6	76	11	262	419	%89
ett, Illine	Mq 00:8	38	4	19	69	76	ത	30	179	25%
Occupar e - Bartl 9:00 PN	Parking Supply	30	4	19	ю	92	11	582	725	cupied =
Exhibit 4 - Parking Occupancy Survey BAPS Hindu Temple - Bartlett, Illinois 3:00 PM - 9:00 PM	Parking Type	Regular Spaces	ADA Spaces	Regular Spaces	ADA Spaces	Regular Spaces	ADA Spaces	Regular Spaces	Totals =	Overall Percent Occupied =
	king on See Parking Description it 3 for ap	Northwest Lot - West of Future	Family Activity Center	Southwest Lot -	West of Cultural Complex	Southeast Lot -	East of Cultural Complex	Northeast Lot - East of Future Family Activity Center		
	Parking Location See Exhibit 3 for Map	4	C	α	1	c)	D		

8


G N GEWALT HAMILTON

Weekday AM Peak Hour (7:30-8:30 AM)
Weekday PM Peak Hour (5:00-6:00 PM)
Sunday Entering (Pre-Service) Peak Hour (4:00-5:00 PM)

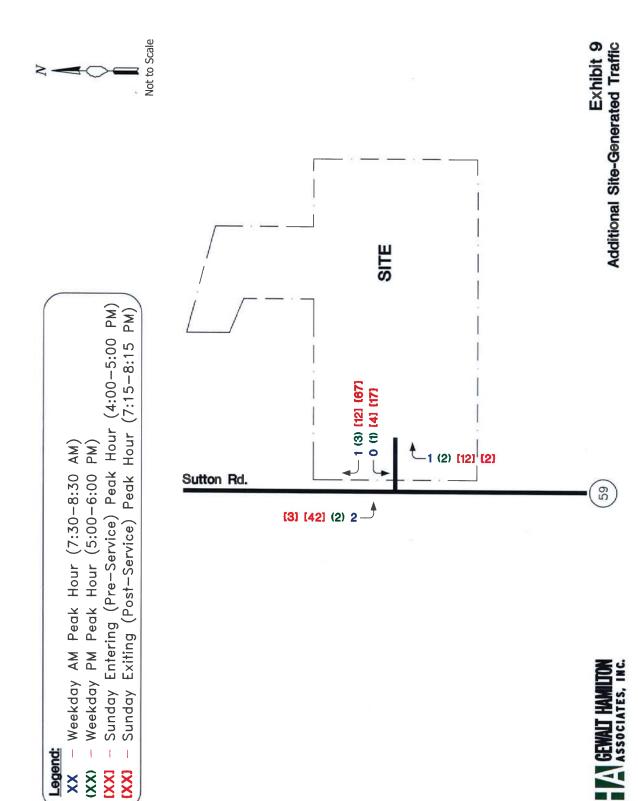

-egend:

×ŝ

Sunday Exiting (Post-Service) Peak Hour (7:15-8:15 PM)

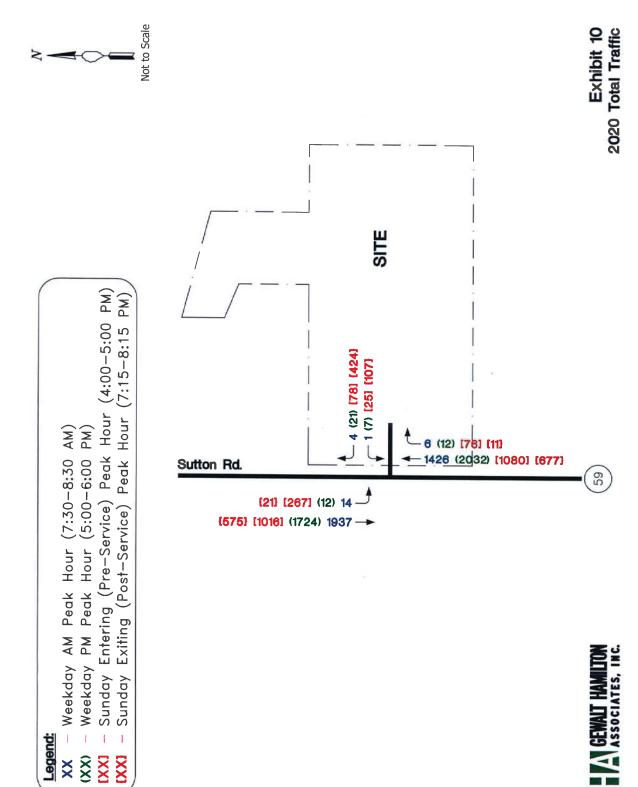
Proposed Expansion BAPS Hindu Temple - Bartlett, IL

Exhibit 8
Project Traffic Characteristics
BAPS Hindu Temple Expansion - Bartlett, Illinois


Part A. Traffic Generation Calculations

	Wee	Weekday AM Peak Hour	k Hour	Week	Neekday PM Peak Hour	k Hour	Sunday Pr	Sunday Pre-Service Peak Hour	eak Hour	Sunday	Sunday Post-Service Peak Hour	Peak Hour
	드	Out	Sum	п	Out	Sum	드	Ont	Sum	드	Out	Sum
Existing	11	4	21	20	24	4	289	87	376	27	447	474
2020 Total Traffic (5 years)	20	ю	25	54	78	52	343	103	446	32	531	563
Total Additional Site Traffic=	8	-	4	4	4	80	54	16	02	ro	84	68

Source: GHA Intersection Turning Movement Counts (May 3, 2015) - Existing; and BAPS Historical Membership Attendance (3.5% compounded annual growth rate) - 2020 Total.


Part B. Trip Distribution

				Percent Use by Route	e by Route			
Route & Direction		Approach Site From	Site From			De	Depart Site To	
	Wee	/eekday	Sur	Sunday	Wee	Veekday	Sul	Sunday
	AM	PM	Pre-Service	Pre-Service Post-Service	AM	PM	Pre-Service Post-Service	Post-Service
. Route 59								
North of Site	%02	20%	80%	%59	75%	%59	75%	75%
South of Site	30%	20%	20%	35%	72%	35%	25%	25%
Totals =	100%	100%	100%	100%	100%	100%	100%	100%

Legend:

-egend:

G A GEWALT HAMILTON

Exhibit 11 Project Parking Characteristics

Illinois
Bartlett,
pansion -
emple Ex
APS Hindu 1
BAPS

Average Vehicle Occupancy (persons/vehicle)		2.67		2.67
Attendance		1,700	Supply	2,020
Parking Occupancy	Parking Supply	78%	Proposed Parking	95%
Parking Demand ¹	Existing Parking Demand and Proposed Parking Supply	637 vehicles	arking Demand and	757 vehicles
Service	Existing Parking De	7:00 PM	Future (Year 2020) Parking Demand and Proposed Parking Supply	7:00 PM

¹ Represents peak parking demand observed at 6:00 PM, corresponding with the Sunday 7:00 PM Service.

Exhibit 12 Intersection Capacity Analyses

Proposed Expansion BAPS Hindu Temple - Bartlett, Illinois

Part A. Parameters - Type of Traffic Control (Source: 2010 Highway Capacity Manual)

II. Stop Sign

I. Traffic Signals

												-		_
00 Total Traffic (See Exhibit 10)	• Current	-	-	-	၁	-	၁	•		A	250	-	20.5	э
020 No-Build Traffic (See Exhibit 6)	• Current	-	-	-	၁	*	2	-	-	A	-	-	3.71	၁
kisting Traffic (See Exhibit 5)	• Current		-	-	၁	-	၁	-	-	A	-	-	15.9	၁
Sunday Exiting (Post-Service) Peal	lour													
OSO Total Traffic (See Exhibit 10)	• Current	-	-	-	Н	•	8	-	-	o	-	-	24.2	၁
020 No-Build Traffic (See Exhibit 6)	• Current	-		-	3		8	•	-	o	•	-	2.12	၁
xisting Traffic (See Exhibit 5)	• Current	-		-	3	-	8	•	· -	8		-	0.61	2
Sunday Entering (Pre-Service) Pea	нон													
OSO Total Traffic (See Exhibit 10)	• Current	-			4		၁	-	-	2	•	-	32.4	а
OSO No-Build Traffic (See Exhibit 6)	• Current	-			4		၁	•		o		-	32.1	a
xisting Traffic (See Exhibit 5)	• Current	-	-		3	-	၁		-	o	٠	-	25.0	о
Weekday Evening Peak Hour	9307 AMERICAN													
020 Total Traffic (See Exhibit 10)	• Current	-			3	-	В	-	-	8		-	18.5	2
020 No-Build Traffic (See Exhibit 6)	• Current	-	•		3	-	8		-	a			7.91	2
xisting Traffic (See Exhibit 5)	• Current		•		a	-	В		-	8		(4)	0.71	2
Weekday Morning Peak Hour														
	0.10.10.544	-			-		_			+			WB Approact	Delay
Route 59 @ Site Access	SQOTS BW													
		ΤΊ	НТ	ТЯ	TJ	НТ	ТЯ	ΤЛ	HT.	17 1	НТ	ТЯ	(esc / veh)	108
	Conditions) Es	atpor	pui	Me	odtse	pun	TOM	unoqų:	S	ntppc	pun	Delay	
	Roadway			N = -	on Cr				M bew	əwəx	11		Approac	
t B. Results		_	1	SO.	194	OM	wew.	i juə red La	qΑ γε	BOTO	ų		intersecti	/ uc
34111209 9 4			_		_									
>80 Unaccept	le delays experienced thi	Lond	ιnοι	ye b	овак	noq	S			4			>20	
	experienced during									3			>32 and ≤ 5	C
	sidered as the acceptable]			5≥ bns 32<	9
>20 and ≤ 35 Some del	experienced on several	bysa	o :sə	uəŋ	əsn	se p	gisəb	us uß	teria)			S≥ bns 31<	9
	y experienced on select	ngis 1	al bh	9268	9					3			> bns 0 ו<	9
	ases clear waiting vehicl	w səl	noųį	leb i	яλ					1			01≥	
OS Delay (sec / veh) Descrip	u									ΓC	S	₫	elay (sec / y	(цәл

Proposed Expansion BAPS Hindu Temple - Bartlett, Illinois Et fididx3

Sunday, May 3, 2015

Part A. Northbound Gap Distribution (for Left Turns In)

197		384	eak Hour Gaps =	9 listoT	
336	42	104	13	8	4.15<
04	١٥	L	ı	L	5.12 of 2.91
149	6	42	L	9	1.61 of 0.71
99	11	99	11	9	6.81 of 8.41
88	22	84	15	7	7.4r of 8.Sr
99	22	63	21	3	3.S1 of 4.01
99	33	28	₽L	7	8.2 to 10.3
56	56	37	37	Į.	f.8 of 0.8
Total Effective Gaps	No. Gaps	Total Effective Gaps	No. Gaps	No. of Vehicles per Gap Interval	Gap Interval
(Post-Service) (M9 21:8-31:			Sunday Entering Peak Hour (4:	-	
69 6	raffic on IL Route	T bnuoddhoV ni s	deg		

Part B. Northbound Gap Distribution (for Right Turns Out)

104	13	91	2	8	>30.6
12	3	0	0	L	3.05 of E.TS
≱8	₽ŀ	₹5	L	9	2.7S of 0.4S
08	16	50	7	9	20.7 to 23.9
29	13	54	9	₽	8.0S of ₱.₹1
99	22	97	91	3	8.71 of 1.41
79	34	99	28	7	0.4f of 8.0f
97	97	23	23		7.01 of 8.7
Total Effective Gaps	No. Gaps	Total Effective Gaps	No. Gaps	No. of Vehicles per Gap Interval	Gap Interval
(Post-Service) (M9 21:8-31:7			Sunday Entering Peak Hour (4:0		
69 €	raffic on IL Route	T bnuoddfroM ni s	deg		

Part C. Northbound and Southbound Gap Distribution (for Left Turns Out)

164		917	eak Hour Gaps =	9 letoT	
16	2	ō	0	8	>33.0
0	0	0	0	L	29.5 to 32.9
0	Į.	0	0	9	4.62 of 0.8S
01	2	0	0	g	22.5 to 25.9
28	L	91	7	7	19.02 of 0.01
72	6	3	ı	3	9.81 of 3.31
ÞÞ	22	ÞΙ	L	7	4.81 of 0.S1
39	39	13	13	ļ.	6.11 of 3.8
caps	No. Gaps	Gaps	No. Gaps	lsvrətni	Gap Interval
Total Effective		Total Effective		No. of Vehicles per Gap	
(Post-Service) (M9 81:8-81:7			Sunday Entering Peak Hour (4:0		
B IL Route 59	o oiñs Trañic o	ynos pue punoq	นมอง นเ sdeก		

Part D. Gap Supply and Demand Summary

s	egeD to sedmuM eldelievA	Number of Vehicles Meeding a Gap		
			eft Turns In	Site Access - L
	384	261	Peak Hour (4:00 -5:00 PM)	unday Entering (Pre-Service)
	191	21	Peak Hour (7:15-8:15 PM)	unday Exiting (Post-Service)
			tuO snruT th	giA - eess Aeis
	526	97	Peak Hour (4:00 -5:00 PM)	unday Entering (Pre-Service)
	919	424	Peak Hour (7:15-8:15 PM)	unday Exiting (Post-Service)
			tuO emuT ft	Site Acces - Le
	91⁄2	52	Peak Hour (4:00 -5:00 PM)	unday Entering (Pre-Service)
	191	701	Peak Hour (7:15-8:15 PM)	unday Exiting (Post-Service)

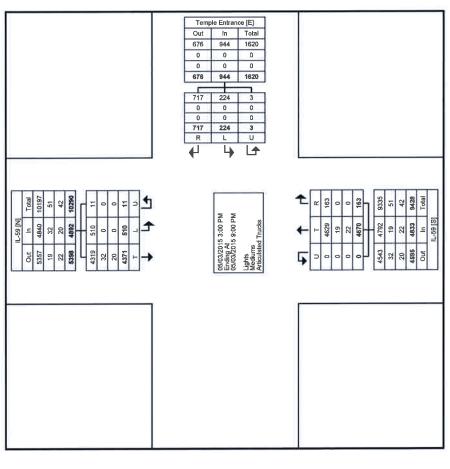
Appendices

Appendix I Existing Traffic Count Summaries

5003,902 Bartlett, IL IL-59 and Hindu Temple Weekrnd 6-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive Vernon Hills, Illinois, United States 60061 (847) 478-9700 lbeckham@gha-engineers.com

Count Name: IL-59 and Hindu Temple Entrance Weekend Site Code Start Date: 05/03/2015 Page No: 1


Turning Moyement Data

		IF-59	29			Temple Entrance	ntrance			II-59	59		
H		Southbound	punoc			Westbound	pund			North	Northbound		
Start Lime	U-Turn	Left	Thru	App. Total	U-Tum	Left	Right	App. Total	U-Tum	Thru	Right	App. Total	Int Total
3:00 PM	0	15	219	234	0	5	7	12	0	228	12	240	486
3:15 PM	0	33	210	243	0	9	11	17	0	240	9	246	909
3:30 PM	0	28	233	261	0	9	12	18	0	224	11	235	514
3:45 PM	3	37	205	245	0	7	18	25	0	240	10	250	520
Hourly Total	8	113	867	983	0	24	48	72	0	832	38	971	2028
4:00 PM	-	51	225	277	0	3	16	19	0	229	16	245	541
4:15 PM	0	72	238	310	0	10	19	29	0	230	14	244	583
4:30 PM	0	61	205	266	0	5	21	26	0	213	17	230	522
4:45 PM	0	41	208	249	1	8	10	14	0	260	- 17	277	540
Hourty Total	1	225	876	1102	1	21	99	88	0	832	29	966	2186
5:00 PM	2	33	221	256	0	8	14	22	0	236	12	248	526
5:15 PM	1	25	207	233	0	5	11	16	0	250	8	258	507
5:30 PM	0	19	261	280	0	ဇာ	6	12	0	252	2	257	549
5.45 PM	0	17	215	232	0	8	12	20	0	193	11	204	456
Hourly Total	3	28	904	1001	0	24	46	70	0	831	38	987	2038
6:00 PM	-	13	197	211	0	ဇ	6	12	0	214	3	217	440
6:15 PM	0	15	170	185	0	ო	23	26	0	212	2	214	425
6:30 PM	0	14	191	205	2	80	24	8	0	188	2	190	429
6:45 PM	0	80	155	163	0	14	12	26	0	170	9	176	365
Hourty Total	1	20	713	764	2	28	68	98	0	784	13	797	1659
7:00 PM	0	7	203	210	0	13	37	25	0	153	-	154	414
7:15 PM	-	7	148	156	0	15	77	35	0	168	2	170	418
7:30 PM	11	ιΩ	105	111	0	24	101	125	0	142	1	143	379
7:45 PM	-	8	127	131	0	22	74	96	0	145	2	147	374
Hourly Total	9	22	583	808	0	74	289	363	0	808	9	614	1585
8:00 PM	0	e	116	119	0	29	105	134	0	129	4	133	386
8:15 PM	0	2	96	86	0	17	99	83	0	117	0	117	298
8:30 PM	0	0	120	120	0	2	19	24	0	125	0	125	269
8:45 PM	0	1	96	26	0	2	10	12	0	112	+	113	222
Hourly Total	0	Φ	428	434	0	63	200	253	0	483	5	488	1175
Grand Total	11	510	4371	4892	e	224	717	944	0	4670	163	4833	10669
Approach %	0,2	10.4	89.3	(6)	0,3	23.7	76.0		0.0	96,6	3,4		34:
Total %	0,1	4.8	41.0	45,9	0.0	2.1	6.7	8,8	0.0	43,8	1.5	45.3	8
Lights	1	510	4319	4840	ღ	224	717	944	0	4629	163	4792	10576
% Lights	100,0	100,0	8'86	98.9	100,0	100.0	100.0	100.0		99.1	100.0	99.2	99.1
Mediums	0	0	32	32	0	0	0	0	0	19	0	19	51
% Mediums	0'0	0.0	0,7	0,7	0'0	0.0	0.0	0'0	*	0.4	0.0	0.4	0,5
Articulated Trucks	0	0	20	20	0	0	0	0	0	22	0	22	42
% Articulated Tracks	00	0.0	2.0	40	00	00	0	00		4			

5003.902 Bartlett, IL IL-59 and Hindu Temple Weekmd 6-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Vernon Hills, Illinois, United States 60061 (847) 478-9700 Ibeckham@gha-engineers.com

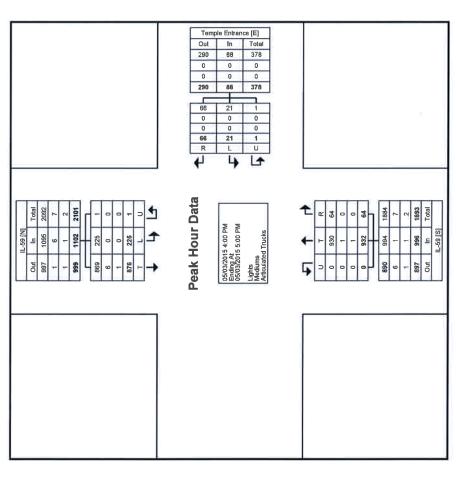
Turning Movement Data Plot

Count Name: IL-59 and Hindu Temple Entrance Weekend Site Code: Start Date: 05/03/2015 Page No: 2

5003.902 Bartlett, IL IL-59 and Hindu Temple Weekmd 6-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive Vernon Hills, Illinois, United States 60061 (847) 478-9700 Ibeckham@gha-engineers.com

Count Name: IL-59 and Hindu Temple Entrance Weekend Weekend Site Code: Start Date: 05/03/2015 Page No: 3


IL-59 Southbound				•						
Southbound			Temple Entrance	Entrance			II-59	29		
			Westbound	puno			Northbound	puno		
	App. Total	U-Tum	Left	Right	App. Total	U-Tum	Thru	Right	App. Total	Int. Total
	27.7	0	8	16	19	0	229	16	245	541
	310	0	10	19	29	0	230	14	244	583
	266	0	ις)	21	26	0	213	17	230	522
	249	**	ဗ	10	14	0	260	17	277	540
	1102	-	21	99	88	0	932	28	966	2186
20.4 79.5	*	1,1	23.9	75.0	(4	0.0	93.6	6.4	39	2.
10.3 40.1	50.4	0'0	1.0	3.0	4.0	0.0	42.6	2.9	45.6	
0.781 0.920	0.889	0,250	0.525	0.786	0.759	0.000	0.896	0.941	0.899	0.937
225 869	1095	1	21	99	88	0	930	19	984	2177
100.0 99.2	99,4	100.0	100.0	100.0	100.0	*	8 66	100.0	8,86	9'66
9 0	9	0	0	0	0	0	1	0	1	7
0.0	0.5	0'0	0.0	0.0	0.0	•23	0,1	0'0	0.1	0,3
0 1	-	0	0	0	0	0	1	0	1	2
0.0 0.1	0.1	0'0	0.0	0.0	0.0	(8)	0,1	0.0	0.1	0.1

5003.902 Bartlett, IL IL-59 and Hindu Temple Weekmd 6-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Count Name: IL-59 and Hindu Temple Entrance Weekend Site Code: Start Date: 05/03/2015 Page No: 4

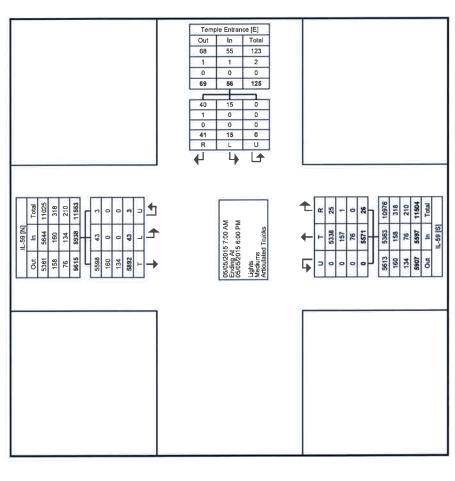
Vernon Hills, Illinois, United States 60061 (847) 478-9700 lbeckham@gha-engineers.com

Turning Movement Peak Hour Data Plot (4:00 PM)

5003.902 Bartlett, IL IL-59 and Hindu Temple Weekday 4-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive Vernon Hills, Illinois, United States 60061 (847) 478-9700 lbeckham@gha-engineers.com

Count Name: IL-59 and Hindu Temple Entrance Weekday Site Code: Start Date: 05/05/2015 Page No: 1


Turning Movement Data

					2	DED NOW	: המם המם						
		ī	IL-59			Temple Entrance	intrance			IL-59	69		
April Time		South	Southbound			Westbound	puno			Northbound	puno		
91111	U-Tum	Left	Thru	App. Total	U-Tum	Left	Right	App. Total	U-Tum	Thru	Right	App Total	Int. Total
7:00 AM	0	7	397	388	0	0	0	0	0	300	+	301	700
7:15 AM	0	7	424	431	0	0	0	0	0	329	e	332	763
7:30 AM	0	2	434	436	0	0	1	1	0	291	0	291	728
7:45 AM	0	-	416	417	0	1	2	8	0	310	-	311	731
Hourly Total	0	12	1871	1683	0	1	3	4	0	1230	ın	1235	2822
8:00 AM	0	0	382	382	0	3	3	9	0	312	0	312	700
8:15 AM	0	-	372	373	0	0	3	8	0	254	-	255	631
8:30 AM	0	4	378	382	0	0	2	2	0	282	0	282	999
8:45 AM	-	4	274	279	0	0	0	0	0	215	0	215	494
Hourly Total	1	o	1406	1416	0	3	8	11	0	1083	18.4	1064	2491
*** BREAK ***	:4	300	100	0.00					**			20	*
4:00 PM	-	4	276	281	0	2	4	9	0	337	2	339	626
4:15 PM	0	2	347	349	0	0	9	3	0	392	_	393	745
4:30 PM	0	2	361	363	0	1	2	3	0	401	2	403	769
4:45 PM	0	0	333	333	0	2	5	7	0	449	ဇ	452	792
Hourly Total	-	8	1317	1326	0	2	14	19	0	1579	8	1587	2882
5:00 PM	0	2	388	390	0	0	4	4	0	435	2	440	834
5:15 PM	0	4	384	388	0	8	5	8	0	467	1	468	864
5:30 PM	0	4	382	386	0	-	4	5	0	402	-	403	794
5:45 PM	-	4	344	349	0	2	8	S	0	395	5	400	754
Hourty Total		14	1498	1513	0	9	16	22	0	1699	12	1711	3248
Grand Total	8	43	5892	5938	0	15	41	98	0	5571	26	5597	11591
Approach %	0.1	0.7	99.2		0.0	26.8	73.2	1.0	0.0	99.5	0,5		
Total %	0.0	0.4	50.8	51.2	0'0	0.1	0,4	0.5	0.0	48.1	0,2	48.3	
Lights	9	43	5598	5644	0	15	40	55	0	5338	25	5363	11062
% Lights	100.0	100,0	95.0	95.0	34	100.0	97.6	98.2		92'8	96.2	95.8	95.4
Mediums	0	0	160	160	0	0	1	1	0	157	1	158	319
% Mediums	0'0	0.0	2.7	2.7	æ	0.0	2.4	1.8	(⊕	2.8	3,8	2.8	2.8
Articulated Trucks	0	0	134	134	0	0	0	0	0	76	0	92	210
% Articulated Trucks	0'0	0.0	2.3	2,3	(4)	0.0	0.0	0.0	38	1.4	0.0	1.4	1,8

5003.902 Bartiett, IL IL-59 and Hindu Temple Weekday 4-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

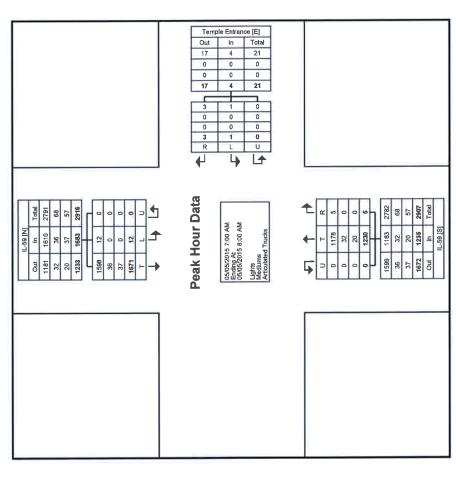
Vernon Hills, Illinois, United States 60061 (847) 478-9700 lbeckham@gha-engineers.com

Turning Movement Data Plot

Count Name: IL-59 and Hindu Temple Entrance Weekday Weekday Site Code: Start Date: 05/05/2015 Page No: 2

5003.902 Bartlett, IL IL-59 and Hindu Temple Weekday 4-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive Vernon Hills, Illinois, United States 60061 (847) 478-9700 ibeckham@gha-engineers.com


Count Name: IL-59 and Hindu Temple Entrance Weekday Site Code: Start Date: 05/05/2015 Page No: 3

				Turning I	Movement Peak Hour Data (7:00 AM)	t Peak Ho	our Data (7:00 AM)					
		≟	IF-59	•		Temple	Temple Entrance	•		1	IT-59		
F		South	Southbound			West	Westbound			North	Northbound		
Otall IIIIe	U-Tum	Left	Thru	App. Total	U-Tum	Left	Right	App. Total	U-Tum	Thru	Right	App. Total	Int. Total
7:00 AM	0	2	397	399	0	0	0	0	0	300	+	301	700
7:15 AM	0	7	424	431	0	0	0	0	0	329	8	332	763
7:30 AM	0	2	434	436	0	0	1	1	0	291	0	291	728
7:45 AM	0	1	416	417	0	1	2	3	0	310	-	311	731
Total	0	12	1671	1683	0	1	3	4	0	1230	5	1235	2822
Approach %	0.0	0.7	99.3	*	0.0	25.0	75.0	æ	0.0	9.66	0.4	0.	e.
Total %	0.0	0.4	57.2	57.6	0.0	0.0	0.1	0.1	0.0	42.1	0.2	42.3	20
PHF	0,000	0.429	0.963	0,965	0.000	0.250	0.375	0.333	0.000	0.935	0.417	0.930	0.957
Lights	0	12	1598	1610	0	1	3	4	0	1178	ĸ	1183	2797
% Lights		100,0	92'8	95,7	*0	100.0	100.0	100,0		95.8	100.0	95.8	95.7
Mediums	0	0	98	36	0	0	0	0	0	32	0	32	68
% Mediums	(r)	0.0	2.2	2.1		0'0	0.0	0.0	•	2.6	0'0	2.6	2.3
Articulated Trucks	0	0	37	37	0	0	0	0	0	20	0	20	22
% Articulated Trucks	100	0.0	22	2.2	II.	0.0	00	0.0	3.	9	0.0	4	00

5003.902 Bartiett, IL IL-59 and Hindu Temple Weekday 4-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

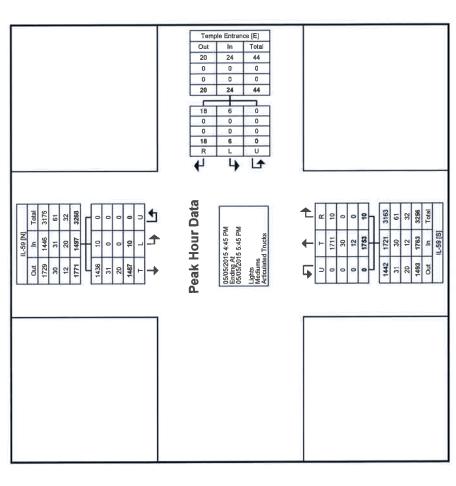
Vernon Hills, Illinois, United States 60061 (847) 478-9700 lbeckham@gha-engineers.com

Turning Movement Peak Hour Data Plot (7:00 AM)

Count Name: IL-59 and Hindu Temple Entrance Weekday Site Code: Start Date: 05/05/2015 Page No: 4

5003.902 Bartlett, IL IL-59 and Hindu Temple Weekday 4-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive Vernon Hills, Illinois, United States 60061 (847) 478-9700 lbeckham@gha-engineers.com


Count Name: IL-59 and Hindu Temple Entrance Weekday Site Code: Start Date: 05/05/2015 Page No: 5

Inrning	ng Movement Pea	OVEILIGITE FOR FIGUR DA		5 1	,						
IL-59 Southbound				Temple Entrance Westbound	intrance ound			IL-59 Northbound	59 Jound		
Left Thru App Total U-Tum	I U-Tum			Left	Right	App. Total	U-Tum	Thu	Right	App. Total	Int. Total
0 333 333 0		0		2	2	7	0	449	ဇ	452	792
2 388 390 0		0		0	4	4	0	435	5	440	834
4 384 388 0	-	0		3	2	8	0	467	1	468	864
4 382 386 0		0		-	4	5	0	402	1	403	794
10 1487 1497 0		0		9	18	24	0	1753	10	1763	3284
0.7 99.3 - 0.0				25.0	75.0	107,	0.0	99.4	9.0		ya)
0.3 45.3 45.6 0.0		0'0		0.2	0.5	0.7	0.0	53.4	0.3	53.7	
0.625 0.958 0.960 0.000	00000			0.500	0.900	0.750	0.000	0.938	0.500	0.942	0.950
10 1436 1446 0		0	ш	9	18	24	0	1711	10	1721	3191
100.0 96.6 96.6	•	•	- 1	100,0	100.0	100.0	9	97.6	100.0	97.6	97.2
0 31 31 0	_	0	Ш	0	0	0	0	30	0	30	61
00 2.1 2.1	Ñ	*		0.0	0.0	0'0	9	1,7	0.0	1.7	1.9
0 20 20 0	0	0	- 1	0	0	0	0	12	0	12	32
0.0 1.3 1.3	20	79		00	00	00		0.7	00	0.7	1.0

5003.902 Bartiett, IL IL-59 and Hindu Temple Weekday 4-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Vernon Hills, Illinois, United States 60061 (847) 478-9700 Ibeckham@gha-engineers.com

Turning Movement Peak Hour Data Plot (4:45 PM)

Count Name: IL-59 and Hindu Temple Entrance Weekday Site Code Site Code: Start Date: 05/05/2015 Page No: 6

Appendix II Membership Growth Calculations

Appendix III Capacity Analysis Worksheets

	TW	O-WAY STOP	CONTRO	OL SUMI	WARY			
General Information			Site In	formation	on			
Analyst	GHA		Interse	ction		IL 59 at Si	ite Acces	S
Agency/Co.	GHA		Jurisdio	ction		IDOT		
Date Performed	6/4/2015		Analysi	s Year		Existing C	onditions	
Analysis Time Period	Weekday	AM Peak						
Project Description 5003	3.900							
ast/West Street: Site Ac					t: IL Route	59		
ntersection Orientation:	North-South		Study P	eriod (hrs)): 0.25			
/ehicle Volumes and	l Adjustmen							
lajor Street		Northbound	1 0	——		Southbou	<u>na</u>	6
Movement	1	2 T	3 R	_	4 	5 T	_	6 R
(aluma (sala/b)	L	1230	5	-	12	1671		IX
/olume (veh/h) Peak-Hour Factor, PHF	1.00	0.96	0.96	_	0.96	0.96	-	1.00
Hourly Flow Rate, HFR								
veh/h)	0	1281	5		12	1740		0
Percent Heavy Vehicles	0	-			0			-
/ledian Type				Raised cu	rb			
RT Channelized			0					0
anes	0	2	0		1	2		0
Configuration		T	TR		L	T		
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
/lovement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)					1			3
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.96	1.00		0.96
lourly Flow Rate, HFR veh/h)	0	0	0		1	0		3
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
lared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
anes	0	0	0		1	0		1
Configuration					L			R
Delay, Queue Length, an	d Level of Ser	vice						
Approach	Northbound	Southbound	'	Vestbound	d		Eastboun	d
Vovement	1	4	7	8	9	10	11	12
ane Configuration		L	L		R			
/ (veh/h)		12	1		3			
C (m) (veh/h)		546	144		477			
//c		0.02	0.01		0.01			1
		0.07	0.02		0.02			
95% queue length					12.6			
Control Delay (s/veh)		11.7	30.2					
OS		В	D	4= -	В			
Approach Delay (s/veh)				17.0				
Approach LOS	-	224		С				

Generated: 6/4/2015 12:45 PM

	TW	O-WAY STOP	CONTRO	OL SUMI	MARY			
General Information			Site Ir	nformati	on			
Analyst	GHA		Interse	ction		IL 59 at S	ite Acce.	SS
Agency/Co.	GHA		Jurisdi	ction		IDOT		
Date Performed	6/4/2015		Analys	is Year		Existing C	Condition	ıs
Analysis Time Period	Weekday	PM Peak						
Project Description 500	3.900							
ast/West Street: Site A					et: IL Route	59		
ntersection Orientation:	North-South		Study F	eriod (hrs): 0.25			
/ehicle Volumes and	d Adjustmen	ts						
/lajor Street		Northbound				Southbou	ınd	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
/olume (veh/h)		1753	10		10	1487		4.00
Peak-Hour Factor, PHF	1.00	0.95	0.95	_	0.95	0.95	_	1.00
Hourly Flow Rate, HFR veh/h)	0	1845	10		10	1565		0
Percent Heavy Vehicles	0	(2)	-		0	22		
Median Type				Raised cu	rb			
RT Channelized			0					0
anes	0	2	0		1	2		0
Configuration		T	TR		L	T		
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Novement	7	8	- 9		10	11		12
	L	T	R		L	Т		R
/olume (veh/h)					6			18
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.95	1.00		0.95
lourly Flow Rate, HFR veh/h)	0	0	0		6	0		18
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
lared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
anes	0	0	0		1	0		1
Configuration					L			R
Delay, Queue Length, ar	nd Level of Sen	/ice						
Approach	Northbound	Southbound	,	Westbound	d		Eastbou	nd
Novement	1	4	7	8	9	10	11	12
ane Configuration		L	L		R			
(veh/h)		10	6		18			
C (m) (veh/h)		331	86		328			
/c		0.03	0.07		0.05			-
					0.03			_
95% queue length		0.09	0.22					-
Control Delay (s/veh)		16.2	50.0		16.6			
OS		С	Е		С			
Approach Delay (s/veh)	r en ro			25.0				
Approach LOS	=			С				

	TW	O-WAY STOP	CONTRO	OL SU	MMARY			
General Information			Site Ir	nforma	ition			
Analyst	GHA		Interse	ction		IL 59 at S	ite Acces	S
Agency/Co.	GHA		Jurisdi	ction		IDOT		
Date Performed	6/4/2015		Analys	is Year		Existing (Conditions	
Analysis Time Period	Sunday E	ntering						
Project Description 5003								
East/West Street: Site Ac					reet: IL Rou	ıte 59		
ntersection Orientation:	North-South		Study F	Period (f	nrs): 0.25			
/ehicle Volumes and	Adjustmer							
Najor Street		Northbound		_		Southbou	und	
Movement	1 1	2	3		4	5 T	_	6 R
I I E LES	<u> </u>	T	R 64	\rightarrow	225		_	R
/olume (veh/h) Peak-Hour Factor, PHF	1.00	932 0.94	0.94	-	0.94	0.94		1.00
Hourly Flow Rate, HFR	1			-				110000
veh/h)	0	991	68		239	1080		0
Percent Heavy Vehicles	0	:20			0	-		HH.
/ledian Type				Raised	curb			
RT Channelized			0					0
anes	0	2	0		1	2		0
Configuration		T	TR		L	T		
Jpstream Signal		0				0		
finor Street		Eastbound				Westbou	ınd	
Movement	7	8	9		10	11		12
	L	Т	R		L	T		R
/olume (veh/h)					21			66
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.94	1.00		0.94
lourly Flow Rate, HFR veh/h)	0	0	0		22	0		70
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
lared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
anes	0	0	0		1	0		1
Configuration					L			R
Delay, Queue Length, and	d Level of Ser	vice						
Approach	Northbound	Southbound		Westbo	und		Eastboun	d
Movement	1	4	7	8	9	10	11	12
ane Configuration		L	L		R			
(veh/h)		239	22		70			
C (m) (veh/h)		665	125		553			
ı/c		0.36	0.18		0.13			
95% queue length		1.63	0.61		0.43		İ	
Control Delay (s/veh)		13.4	39.9		12.5		1	
OS		13.4 B	E		B		i	_
Approach Delay (s/veh)				19.0			<u> </u>	
	-55		-			+		
Approach LOS	1949	434		С				

Generated: 6/4/2015 12:47 PM

		TW	O-WAY STOP	CONTR	OL SL	JMN	//ARY				
General Information			1.20-04-11	Site I	nform	atio	n				
Analyst		GHA		Interse	ection			IL 59 at 3	Site A	ccess	
Agency/Co.		GHA		Jurisdi				IDOT			
Date Performed		6/4/2015		Analys	is Year	•		Existing	Condi	itions	
Analysis Time Period		Sunday E	xiting								
Project Description 500											
East/West Street: Site A							t: IL Route	59			
Intersection Orientation:				Study	Period (hrs)	0.25				
Vehicle Volumes an	d Ad	justmen									
Major Street			Northbound					Southbo	und	_	
Movement	_		2	3			4	5			6
\	_	L	T	R 9	-		18	Т		-	R
Volume (veh/h) Peak-Hour Factor, PHF	_	1.00	584 0.93	0.93			0.93	0.93		-	1.00
Hourly Flow Rate, HFR	\dashv				_			1		_	
(veh/h)		0	627	9			19	618			0
Percent Heavy Vehicles		0	125				0	-			ion.
Median Type					Raised	d cur	b				
RT Channelized				0							0
Lanes		0	2	0			1	2			0
Configuration			T	TR			L	T			
Upstream Signal			0					0			
Minor Street			Eastbound					Westbou	und		
Movement		7	8	9			10	11			12
		L	Т	R			L	Т			R
Volume (veh/h)							90				357
Peak-Hour Factor, PHF		1.00	1.00	1.00			0.93	1.00			0.93
Hourly Flow Rate, HFR (veh/h)		0	0	0			96	0			383
Percent Heavy Vehicles		0	0	0			0	0			0
Percent Grade (%)			0					0			
Flared Approach			N			_		N			
Storage			0					0			
RT Channelized				0							0
Lanes		0	0	0			1	0			1
Configuration							L				R
Delay, Queue Length, a	nd Lev	vel of Sen	/ice								
Approach	Nort	hbound	Southbound		Westbo	und			Eastb	ound	
Movement		1	4	7	8		9	10		11	12
Lane Configuration			L	L			R				
v (veh/h)			19	96			383				
C (m) (veh/h)			957	370			727		Ī		
v/c			0.02	0.26			0.53		Ī		
95% queue length			0.06	1.02			3.11		1		
Control Delay (s/veh)			8.8	18.1			15.3		1		
LOS	_		A	C			C		1		
Approach Delay (s/veh)			1440		15.9						
Approach LOS					C						
Apploacii LOS			(50)					I			

Generated: 6/4/2015 1:11 PM

	TW	O-WAY STOP	CONTRO	DL SU	MMARY			
General Information			Site Ir	nforma	tion			
Analyst	GHA		Interse	ction			ite Access	
Agency/Co.	GHA		Jurisdi			IDOT		
Date Performed	6/4/2015		Analys	is Year		2020 No-l	Build	
Analysis Time Period	Weekday	AM Peak						
Project Description 500								
East/West Street: Site A					reet: IL Route	59		
ntersection Orientation:			Study	eriod (r	rs): 0.25			
Vehicle Volumes an	<u>d Adjustmen</u>					0 411		
Major Street		Northbound	1 0	\rightarrow	4	Southbou 5	na	6
Movement	11	2 T	3 R	_	4	T	_	R
/aluma (uph/h)		1426	5	\rightarrow	12	1937	_	
Volume (veh/h) Peak-Hour Factor, PHF	1.00	0.96	0.96		0.96	0.96	_	1.00
Hourly Flow Rate, HFR				\neg				
(veh/h)	0	1485	5		12	2017		0
Percent Heavy Vehicles	0	3,000) /		0	=		***
Median Type				Raised	curb			
RT Channelized			0					0
Lanes	0	2	0		1	2		0
Configuration		T	TR		L	T		
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)				\rightarrow	1	1.00		3
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.96	1.00	_	0.96
Hourly Flow Rate, HFR (veh/h)	0	0	0		1	0		3
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0		- ⊦		0		
Flared Approach		N		_		N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		1	0		1
Configuration					L			R
Delay, Queue Length, a								
Approach	Northbound	Southbound		Westbo			Eastbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L	L		R			
/ (veh/h)		12	1		3			
C (m) (veh/h)		457	111		417			
v/c		0.03	0.01		0.01			
95% queue length		0.08	0.03		0.02			
Control Delay (s/veh)		13.1	37.7		13.7	1		
LOS		B	E		В			
	60003			19.7				
Approach Delay (s/veh)	()			C				_
Approach LOS	2.500	388/		U				

	TW	O-WAY STOP	CONTRO	DL SUN	MARY			
General Information			Site Ir	format	tion			
Analyst	GHA		Interse	ction		IL 59 at Si	ite Access	
Agency/Co.	GHA		Jurisdie	ction		IDOT		
Date Performed	6/4/2015		Analys	s Year		2020 No-L	Build	
Analysis Time Period	Weekday	PM Peak						
Project Description 5003								
ast/West Street: Site Ac					eet: IL Route	59		
ntersection Orientation:	North-South		Study F	eriod (hr	rs): 0.25			
/ehicle Volumes and	l Adjustmen							
Major Street		Northbound				Southbou	nd	-
Movement	11	2	3	_	4	5 T		6 R
	L	T	R		L	1724		R
/olume (veh/h)	1.00	2032	10 0.95	_	10 0.95	0.95	-	1.00
Peak-Hour Factor, PHF Hourly Flow Rate, HFR	1.00	0.95		_			-	
veh/h)	0	2138	10		10	1814		0
Percent Heavy Vehicles	0	STRE	377		0	-		
Median Type				Raised o	curb			
RT Channelized			0					0
anes	0	2	0		1	2		0
Configuration		T	TR		L	T		
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	Т		R
/olume (veh/h)					6			18
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.95	1.00		0.95
lourly Flow Rate, HFR veh/h)	0	0	0		6	0		18
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
lared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
anes	0	0	0		1	0		1
Configuration					L			R
Delay, Queue Length, an	d Level of Ser	vice						
Approach	Northbound	Southbound		Westbou	nd		Eastbound	i
Movement	1	4	7	8	9	10	11	12
ane Configuration		L	L		R			
/ (veh/h)		10	6		18			
C (m) (veh/h)		255	61		270			
ı/c		0.04	0.10		0.07			
95% queue length		0.12	0.31		0.21			
Control Delay (s/veh)		19.7	70.4		19.3			
OS		C	F		С			
Approach Delay (s/veh)	(m)			32.1				_
Approach LOS				D				
Approach LOS	S ST 3							

	TW	O-WAY STOP	CONTR	OL SUN	MARY			
General Information			Site Ir	nformat	ion			
Analyst	GHA		Interse	ction		IL 59 at S	ite Access	
Agency/Co.	GHA		Jurisdi	ction		IDOT		
Date Performed	6/4/2015		Analys	is Year		2020 No-	Build	
Analysis Time Period	Sunday E	ntering						
Project Description 5003.								
East/West Street: Site Acc					et: IL Route	59		
ntersection Orientation: /	lorth-South		Study F	Period (hr	s): 0.25			
Vehicle Volumes and	Adjustmen	its						
Major Street		Northbound				Southbou	ınd	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
/olume (veh/h)		1080	64		225	1016		4.00
Peak-Hour Factor, PHF	1.00	0.94	0.94		0.94	0.94		1.00
lourly Flow Rate, HFR veh/h)	0	1148	68		239	1080		0
Percent Heavy Vehicles	0	122			0	_		-
Median Type				Raised c	urb			
RT Channelized			0					0
anes	0	2	0		1	2		0
Configuration		T	TR		L	T		
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	Т		R
/olume (veh/h)					21			66
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.94	1.00		0.94
Hourly Flow Rate, HFR veh/h)	0	0	0		22	0		70
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized		1	0					0
anes	0	0	0		1	0		1
Configuration					L			R
Delay, Queue Length, and	I evel of Ser	vice						
	Northbound	Southbound		Westbour	nd	1	Eastbound	1
Movement	1	4	7	8	9	10	11	12
ane Configuration		L	L		R			
/ (veh/h)		239	22		70			
C (m) (veh/h)		581	109		499			
//c		0.41	0.20	-	0.14			
95% queue length		2.00	0.71		0.49	†		_
			46.2		13.4	-		+
Control Delay (s/veh)		15.5						+
LOS		С	Ε	24.5	В	<u> </u>		
Approach Delay (s/veh)		1993		21.2				
Approach LOS	1==	(200)		С		<u> </u>		

	TW	O-WAY STOP	CONTRO	OL SUN	MARY			
General Information			Site Ir	nformat	tion			
Analyst	GHA		Interse	ction		IL 59 at S	ite Acces	S
Agency/Co.	GHA		Jurisdie			IDOT		
Date Performed	6/4/2015		Analys	is Year		2020 No-l	Build	
Analysis Time Period	Sunday E	xiting						
Project Description 500	3.900							
East/West Street: Site A	ccess		North/S	outh Stre	eet: IL Route	59		
Intersection Orientation:	North-South		Study F	Period (hr	rs): 0.25			
Vehicle Volumes an	d Adjustmen							
Major Street		Northbound				Southbou	nd	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
Volume (veh/h)		677	9		18	575		4.00
Peak-Hour Factor, PHF	1.00	0.93	0.93	_	0.93	0.93	-	1.00
Hourly Flow Rate, HFR (veh/h)	0	727	9		19	618		0
Percent Heavy Vehicles	0	=			0	- 24		(44)
Median Type				Raised o	curb			
RT Channelized			0					0
Lanes	0	2	0		1	2		0
Configuration		T	TR		L	T		
Upstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	Т	R		L	T		R
Volume (veh/h)					90			357
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.93	1.00		0.93
Hourly Flow Rate, HFR (veh/h)	0	0	0		96	0		383
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage	1	0	1			0		
RT Channelized			0					0
Lanes	0	0	0		1	0		1
Configuration	1		1		L			R
Delay, Queue Length, a	nd Level of Ser	vice						
Approach	Northbound	Southbound		Westbou	nd		Eastboun	d
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L	L		R			
v (veh/h)		19	96		383			
C (m) (veh/h)		879	334		682			
v/c		0.02	0.29		0.56			
		0.07	1.16		3.51			
95% queue length		9.2	20.1		16.8	1		+
Control Delay (s/veh)						 		+
LOS		Α	С		С	!		
Approach Delay (s/veh)	(-	(***)		17.5				
Approach LOS	- (=)	7447		С				

Generated: 6/4/2015 12:39 PM

	TW	O-WAY STOP	CONTRO	DL SU	MM	ARY					
General Information			Site In	form	atio	1					
Analyst GHA			Intersection				IL 59 at Site Access				
Agency/Co.	GHA	Jurisdiction			IDOT						
Date Performed	6/4/2015			Analysis Year			2020 Total Traffic				
nalysis Time Period Weekday AM Peak											
Project Description 5003											
East/West Street: Site Access				North/South Street: IL Route 59 Study Period (hrs): 0.25							
ntersection Orientation: /	North-South		Study P	eriod (hrs):	0.25					
/ehicle Volumes and	Adjustmen										
Major Street		Northbound				Southbound					
Movement	1	2	3	_		4	5 T	\dashv	_	6 R	
7.1	L	T	R 6	_		14	1937	_	_	K	
/olume (veh/h)	1.00	1426 0.96	0.96	_		0.96	0.96		1.00		
Peak-Hour Factor, PHF Hourly Flow Rate, HFR											
veh/h)	0	1485	6			14 2017				0	
Percent Heavy Vehicles	0	i ere	(m-1)			0	s = 0 (= 0				
/ledian Type	Raised curb										
RT Channelized			0				0				
anes	0	2	0) 1		2			0		
Configuration		T	TR		L		T				
Jpstream Signal		0					0				
Minor Street	Eastbound				Westbound						
Movement	7	8	9			11		12			
	L	T	R		L		Т		R		
/olume (veh/h)					1				4		
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.96		1.00		0.96		
Hourly Flow Rate, HFR veh/h)	0	0	0			1	0		4		
Percent Heavy Vehicles	0	0	0		0	0			0		
Percent Grade (%)		0					0				
lared Approach		N					N				
Storage		0					0				
RT Channelized			0							0	
anes	0	0	0	0		1	0			1	
Configuration						L				R	
Delay, Queue Length, and	Level of Sen	vice									
Approach	Northbound	Southbound	Westbound			Eastb					
Movement	1	4	7	8		9	10	1	1	12	
ane Configuration		L _	L			R					
(veh/h)		14	1			4					
C (m) (veh/h)		456	111			417					
I/C		0.03	0.01			0.01					
95% queue length		0.09	0.03		一	0.03					
Control Delay (s/veh)		13.1	37.7			13.7					
OS		B	E		\neg	В	1	t^{-}	-		
Approach Delay (s/veh)	7es/	1841		18.5			1				
	-		76.5 C			 		_			
Approach LOS	(199)	(-11 1)									

Generated: 6/4/2015 12:22 PM

	TW	O-WAY STOP	CONTR	OL SUM	MARY			
General Information			Site Ir	nformatio	on			
Analyst	GHA		Interse	ction		IL 59 at S	ite Acce	SS
Agency/Co.	GHA		Jurisdi			IDOT		
Date Performed	6/4/2015		Analys	is Year		2020 Tota	al Traffic	
Analysis Time Period	Weekday	PM Peak						
Project Description 500	03.900							
East/West Street: Site A		0			t: IL Route	59		
Intersection Orientation:	North-South		Study F	Period (hrs)	: 0.25			
Vehicle Volumes an	d Adjustmen	ts						
Major Street		Northbound				Southbou	ınd	
Movement	11	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)		2032	12		12	1724		
Peak-Hour Factor, PHF	1.00	0.95	0.95		0.95	0.95	-	1.00
Hourly Flow Rate, HFR (veh/h)	0	2138	12		12	1814		0
Percent Heavy Vehicles	0		-		0	1220		-
Median Type				Raised cui	rb			
RT Channelized			0					0
Lanes	. 0	2	0		1	2		0
Configuration		T	TR		L	T		
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)					7			21
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.95	1.00		0.95
Hourly Flow Rate, HFR (veh/h)	0	0	0		7	0		22
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		1	0		1
Configuration					L			R
Delay, Queue Length, a	nd Level of Sen	vice						
Approach	Northbound	Southbound		Westbound			Eastbou	nd
Movement	1	4	7	8	9	10	11	12
ane Configuration		L	L		R			
(veh/h)		12	7		22			
C (m) (veh/h)		254	60		269			
//c		0.05	0.12		0.08			
95% queue length		0.15	0.72		0.26			_
Control Delay (s/veh)		19.9	72.8		19.6			
						_		
Los		С	F	00.1	С			
Approach Delay (s/veh)	-			32.4				
Approach LOS	=	- =		D				

Generated: 6/4/2015 12:25 PM

	TW	O-WAY STOP	CONTR	OL SUMI	MARY			
General Information			Site Ir	nformation	on			
Analyst	GHA		Interse	ction		IL 59 at S	ite Acces	SS
Agency/Co.	GHA		Jurisdi			IDOT		
Date Performed	6/4/2015		Analys	is Year		2020 Tota	al Traffic	
Analysis Time Period	Sunday Er	ntering						
Project Description 5003	3.900							
East/West Street: Site Ac					t: IL Route	59		
Intersection Orientation:	North-South		Study F	Period (hrs)	: 0.25			
Vehicle Volumes and	Adjustmen	ts						
Major Street		Northbound				Southbou	ınd	
Movement	1	2	3		4	5		6
	L	Т	R		L	T	_	R
Volume (veh/h)	1.00	1080	76		261	1016	—	4.00
Peak-Hour Factor, PHF	1.00	0.94	0.94		0.94	0.94		1.00
Hourly Flow Rate, HFR (veh/h)	0	1148	80		277	1080		0
Percent Heavy Vehicles	0	1221			0	-		
Median Type				Raised cu	rb			
RT Channelized			0					0
Lanes	0	2	0		1	2		0
Configuration		T	TR		L	T		
Upstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	Т	R		L	T		R
Volume (veh/h)					25			78
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.94	1.00		0.94
Hourly Flow Rate, HFR (veh/h)	0	0	0		26	0		82
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		1	0	\neg	1
Configuration					L			R
Delay, Queue Length, and	d Level of Serv	rice						
	Northbound	Southbound		Westbound			Eastbour	nd
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L	L		R			
v (veh/h)		277	26		82			
C (m) (veh/h)		575	94		496			
v/c		0.48	0.28		0.17			
95% queue length		2.61	1.02		0.59			
		16.9	57.3		13.7			+
Control Delay (s/veh)								_
LOS		С	F	040	В			
Approach Delay (s/veh)	(##)			24.2				
Approach LOS	-	1000		С				

Generated: 6/4/2015 12:27 PM

	TW	O-WAY STOP	CONTR	OL SUM	IMARY			
General Information			Site II	nformat	ion			
Analyst	GHA		Interse	ction		IL 59 at S	ite Acces	SS
Agency/Co.	GHA		Jurisdi	ction		IDOT		
Date Performed	6/4/2015		Analys	is Year		2020 Tota	al Traffic	
Analysis Time Period	Sunday Ex	kiting						
Project Description 500								
East/West Street: Site A					et: IL Route	59		
Intersection Orientation:	North-South		Study F	Period (hr	s): 0.25			
Vehicle Volumes an	d Adjustmen	ts						
Major Street		Northbound				Southbou	ınd	
Movement	1	2	3		4	5		6
	L	T	R	_	L	T		R
Volume (veh/h)	1.00	677	11		21	575		4.00
Peak-Hour Factor, PHF	1.00	0.93	0.93		0.93	0.93		1.00
Hourly Flow Rate, HFR (veh/h)	0	727	11		22	618		0
Percent Heavy Vehicles	0	12021	122		0	-		724
Median Type				Raised c	urb			
RT Channelized			0					0
Lanes	0	2	0		1	2		0
Configuration		T	TR		L	T		
Upstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)					107			424
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.93	1.00		0.93
Hourly Flow Rate, HFR (veh/h)	0	0	0		115	0		455
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		I N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		1	0		1
Configuration					L			R
Delay, Queue Length, a	nd Level of Serv	/ice						
Approach	Northbound	Southbound		Westbour	nd		Eastbour	nd
Movement	1	4	7	8	9	10	11	12
Lane Configuration		L	L		R			
v (veh/h)		22	115		455			
C (m) (veh/h)		877	332		681			
v/c	-	0.03	0.35	-	0.67			1
95% queue length		0.08	1.51		5.11			_
Control Delay (s/veh)		9.2	21.5		20.3			
					C 20.3			_
LOS		Α	С	00.5	<u> </u>			
Approach Delay (s/veh)	-			20.5				
Approach LOS	F200	22		С				

Generated: 6/4/2015 12:29 PM

Appendix IV Gap Study Summary

5003.902 Bartlett, IL IL-59 and Hindu Temple Entrance 6-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Vernon Hills, Illinois, United States 60061 (847) 478-9700 Imeans@gha-engineers.com

Count Name: IL-59 and Hindu Temple Entrance GAP Site Code: Start Date: 05/03/2015 Page No: 1

Combined Direction (Southbound)	(punoq																											I
Start Time	3.0	3.0 -	5.0	5.0 -	6.0 -	7.0-8.0	9.0	9.0 -	10.0 -	11.0-	13.0	13.0 -	14.0 -	15.0 -	16.0 -	17.0 -	19.0	19.0 -	20.0 - 21.0	210- 220	22.0- 2	23.0 - 2	240- 250	26.0	26.0 - 27.0	27.0 28.0	28.0 -	Total
3:00 PM	46	22	10	12	5	4	2	2	2	-	3	2	0	0	0	0	0	0	0	0		0	0	0	0	0	0	=
3:15 PM	æ	24	24	10	e	T	6	-	0	1	-	2	0	-	0	0	0	0	-	0	0	0	0	0	0	0	0	128
3:30 PM	88	20	7	7	7	m	2	4	٠	9	2	0	0	27		0	0	0	0	0	0	0	0	0	0	0	0	98
3:45 PM	46	22	11	12	8	ro.	æ	۳	4	es	÷	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	116
4:00 PM	8	19	10	12	8	۳	7	2	1	0	1	0	0	0		0	0	0	0	0	-	0	0	0	0	0	0	103
4:15 PM	42	20	£	^	_	ю	0	٠	0	2	-	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	88
4:30 PM	25	14	13	9	2	0	2	0	2	2	٠		1	0	0	0	0	-	0	0	0	0	0	0	0	0	0	37
4:45 PM	88	21	20	15	ю	2	0	٠		٠	0	o	0	r	0	0	0	0	7	0	-	0	0	0	0	0	0	108
5:00 PM	45	24	10	7	ø	60	m	0	*	4	0	1	0	2	0	0	0	0	0	0	1	0	0	0	0	0	0	107
5:15 PM	4	24	13	16	4	5	თ	0	-	0	-	1	0	0	¥	0	0	0	0	0	0	0	0	0	0	0	0	119
5:30 PM	83	22	16	4	ω	89	8	÷	ю	٠	0	٠	0	0	0	0	i en	0	0	0	0	0	0	0	0	0	0	8
5:45 PM	25	12	15	+	σ	9	25	2	2	8	2	0	1	0	0	0	+	0	0	0	·+	0	0	0	0	0	÷	122
6:00 PM	22	27	15	10	80	4	6	3	e	3	e	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	133
6:15 PM	8	22	6	12	ഹ	5	6	٠	2	1	2	2	Oer:	+	0	0	0	2	0	0	0	0	0	0	0	0	0	118
6:30 PM	42	19	18	12	11	9	၈	5	0	ી	1	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	122
6:45 PM	33	18	7	9	œ	7	2	٠	÷	F	22	-	0	-	1	8	1	-	0	0	0	0	0	0	-	0	1	8
7:00 PM	98	29	10	7	e	0	ß	4	2	2	-	3	1	4	0	-		÷	0	0	٠	0	0	0	0	0	0	111
7:15 PM	48	24	13	13	7	4	9	6	*	0	-	3	0	0	+	0	0	0	0	0	0	0	0	0	0	0	2	128
7:30 PM	83	20	20	10	7	3	m	5	3	•	1	2	-	-	-	-	-	-	0	2	2	,-	0	0	0	0	0	115
7:45 PM	32	56	10	8	10	9	7	9	6	m	0	÷		2	0	2	0	0	٥	0	0	0	0	0	0	80	0	120
8:00 PM	8	23	21	7	en	6	4	2	3	8	2	2	1	-	2	0	+	-	0	0	-	0	-	0	0	0	0	123
8:15 PM	20	15	13	80	2	7	2	7	2	2	-	2		2	6	0	47	٠	0	0	0	0	0	0	0	0	2	103
8:30 PM	37	17	13	11	10	2	5	5	6	3	4	1	٠	2	4	0	-	0	0	-	0	0	0	0	0	0	0	123
8:45 PM	22	18	6	11	9	6	7	3	8	8	4	2	्य ।	2	٠	÷	÷	2	0	0	0	0	0	·	٥	0	0	109
Total	964	502	318	234	150	108	85	8	20	47	39	怒	14	24	16	Ф	6	9	2	3	89	-	-	-		20	9	2699
Total %	35,7	18,6	11.8	8.7	5.6	4.0	3.1	2.3	1.9	1,7	1.4	1,3	0.5	6.0	9.0	0.3	0.3	0.4	0.1	0.1	0.3	00	0.0	0.0	0,0	0.0	0.2	100.0

5003,902 Bartlett, IL IL-59 and Hindu Temple Entrance 6-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive Vernon Hills, Illinois, United States 60061 (847) 478-9700 Imeans@gha-engineers.com

Count Name: IL-59 and Hindu Temple Entrance GAP Site Code: Start Date: 05/03/2015 Page No: 2

	•
	•

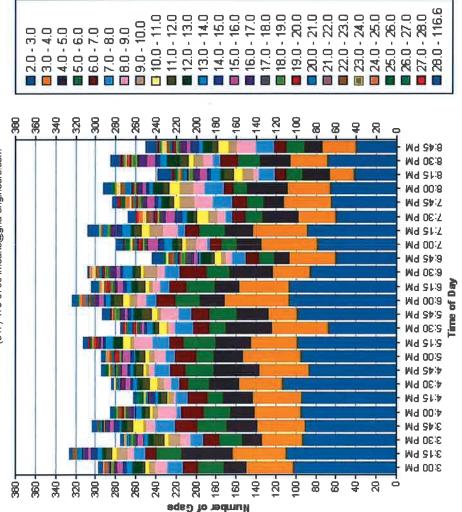
Southbound (Southbound)																												
Start Time	3.0	3.0 -	5.0	5.0 -	6.0 - 7.0	7.0 -	9.0	9.0 -	10.0 -	11.0-	12.0 - 13.0	13.0 -	14.0 -	15.0 - 16.0	16.0 -	17.0 -	19.0	19.0 - 20.0	20.0 - 2	21.0- 22.0	22.0 - 23.0	23.0 - 24.0	24.0 - 25.0	25.0 -	26 0 - 27.0	27.0 - 28.0	28.0 - 116.6	Total
3:00 PM	8	6	9	7	4	7	5	**	0	*	3	0	٠	4		0	2	æ:	1		1	0	-	0	0	0	e	88
3:15 PM	19	11	12	3	4	9	2	9	2	2	2	÷	2	1	1	2	0	1	3		1	0	0	0	0	0	e	85
3:30 PM	25	8	9	4	9	7	4	4	2	2	0	0	*	2	0	0	1	0	2	0	0	4	2	0	0	0	4	83
3:45 PM	52	16	13	7	6	o	1	2	5	+	3	2	3	0	0	1	1	0	2	0	0	0	0	0	0	0	က	103
4:00 PM	22	6	7	9	9	4	7	3	0		2	ю	0	0	0	2	0	2	0	0	2	i de	0	2	0	0	4	83
4:15 PM	21	6	9	2	3	7	1	60	0	m	0	2	2	0	•	*	0	*	2	0	0	2	0	-		0	4	74
4:30 PM	28	15	4	8	2	m	3	4	8	N	2	æ	2	2	m	0	0		2	٠	1	0	0	0	0	0	ത	8
4:45 PM	58	15	11	8	9	7	2	2	-	e	-	0	1	-	1	3	0	-	1	2	0	0	0	٢	0	0	ო	66
5:00 PM	22	19	8	7	8	e	1	3	0		9	0	2	8		0	1	60	0		0	0	2	0	0	0	8	35
5:15 PM	30	11	6	11	9	4	2	2	8	¥	2	2	2	+	0	0	0	**	0	0	.	0	25	0	0	+	s	95
5:30 PM	19	20	18	9	4	34	0	+		2	3	2	0	0	0	1	0	3	3	1	4	0	0	0	0	2	2	93
5:45 PM	29	10	6	10	4	v)	9	2	3	2	+	2	0	œ	9		2	0	0	٠	0	0	0	0	(S)	1	ю	8
6:00 PM	31	15	7	8	3	2	2	2	2	2	1	**	٦	4	0	3	0	0	0	3	-	0	0	-	0	0	9	32
6:15 PM	31	12	10	11	4	m	1	-	0	m	3	۳	2	6	2	0	3	0	0	0		2	1	0	0	0	3	26
6:30 PM	35	9	12	3	10	9	3	9	1	3	2	2	2	0	÷	6	0	2	0	2	0		3	0	0	0	2	93
6:45 PM	12	15	60	2	2	2	8	0	÷	2	4	ar.	0	*	0	2	+	¥	2	0	2	1	0	*		0	5	72
7:00 PM	18	10	9	9	-	-	4	-	0	-	2	3	2	4	-	÷	0	2	2		0		0	0	0		9	74
7:15 PM	24	11	8	8	6	Ħ	9	ā	- E	2	3	r	9	0	2	×	2	0	3	1	0	0	0	0	Ε.	0	4	90
7:30 PM	20	10	13	4	2	2	က	2	60	0	9	0	4	4	2	*	0	-	0	0	0	**	0	0	0	0	വ	88
7:45 PM	13	11	7	9	2	2	9	7	3	0		o		3	2	0	0	2	1	0		2	1		ų	0	4	83
8:00 PM	20	14	11	4	4	6	9	2	2	*	63	0	0	2	3	0	÷	٠	2	2	0	÷	0	**	•	0	*	8
8:15 PM	12	4	7	22	+	7		0	2	en	1	4	1	-	0	٠	+	0	3	٠	0	0	1	2	۲	0	7	89
8:30 PM	14	10	6	9	9	2	4	2	0	2	9	n	1	4	2	0	+	2	0	0	1		0	0	70	1	2	77
8:45 PM	8	9	7	2	4	7	7	3	1	2	8	0	1	-	3	2	1	1	1	0	0	2	0		0	0	7	70
Total	532	276	210	144	105	112	74	29	39	25	55	31	34	42	29	25	17	56	30	18	13	16	12	11	8	9	32	2081
Total %	25.6	13,3	10.1	6.9	5.0	5,4	3.6	3.2	1,9	2.6	2.6	1.5	1.8	2.0	1.4	1.2	0.8	1.2	1.4	6.0	9.0	0.8	9.0	0.5	0.4	0.3	4.6	100.0

5003.902 Bartlett, IL IL-59 and Hindu Temple Entrance 6-hr GHA MIO

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Vernon Hills, Illinois, United States 60061 (847) 478-9700 Imeans@gha-engineers.com

Count Name: IL-59 and Hindu Temple Entrance GAP GAP Site Code: Start Date: 05/03/2015 Page No: 3


20. 30. 40. 50. 60. 7 27 15 7 7 35 18 15 12 20 9 7 11 33 18 8 8 31 20 13 7 12 20 13 15 6 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 10 13 6 10 13 6 11 7 19 7 5 11 7 4 3 20 10 4 2 10 5 7 4	.00 8 4 8 8 0 0 8 8 F	800 - 900 - 1000 900 - 1000 900 - 1000 900 - 1000 900 900 900 900 900 900 900 900 90	11.0	12.0	13.0	13.0 -	14.0 -	15.0 -	16.0 - 1	17.0 - 1			20.0 = 21	21.0 - 22	22.0 - 23.0 - 24.0 24.0	0- 240-	0- 250-	0- 260-	0- 27.0-		
27 15 7 7 35 18 15 12 20 9 7 11 20 9 7 11 33 18 8 8 34 14 13 7 20 13 16 6 22 11 13 5 22 14 12 7 16 6 8 7 22 22 3 7 25 17 8 3 10 12 7 5 11 7 6 7 25 17 8 3 26 10 4 2 11 7 6 3 10 5 7 4 20 10 4 2 4 5 7 4				÷							19.0	20.0					- 1			0 116.6	6 Total
35 18 15 12 20 9 7 11 33 18 8 8 31 20 13 7 24 14 13 7 20 13 15 6 25 11 13 5 20 14 12 7 16 6 8 7 22 22 3 7 26 16 5 6 10 13 6 7 25 17 8 3 17 19 7 5 11 7 4 3 20 10 4 2 10 5 7 4					u	0	8	1	2	1		1	0	1 (0 0			0 0	0	~	87
30 13 7 12 20 9 7 11 33 18 8 8 31 20 13 7 12 34 14 13 7 20 13 15 6 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 10 4 2 11 7 4 3 20 10 4 2 10 5 7 4				8		8	4		2	0	0	0		-	1	0	0	0	0 0	**	113
20 9 7 11 33 18 8 8 34 20 13 7 20 13 15 6 22 11 13 5 22 22 3 7 23 16 8 19 12 7 24 14 12 7 25 11 13 5 26 16 5 6 19 12 14 8 10 13 6 7 25 17 8 3 11 7 4 3 10 5 7 4				3	e	4	0	2	1	e	2		0	0	0		0	0	0 0	0	
33 18 8 8 8 31 20 13 7 20 13 15 6 20 13 15 6 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 10 13 6 20 10 4 2 11 7 19 7 5 11 7 19 7 5 11 7 19 7 5 11 7 19 7 5 11 7 19 7 5 11 7 19 7 5 11 7 19 7 5			•	2	2	0	2	0	3	1	0	2	77.	0	2 0	0	0	0	0 0	2	85
31 20 13 7 20 13 16 6 20 13 16 6 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 14 12 7 20 10 13 6 20 10 4 2 10 15 5 9 3				4	+	2		. -	2	e	2		0	0		0 0	0 0	0	0 0		ð
34 14 13 7 20 13 15 6 28 15 10 4 25 11 13 5 20 14 12 7 18 6 8 7 22 22 3 7 28 16 5 6 19 12 14 8 10 13 6 7 25 17 8 3 17 19 7 5 11 7 4 2 13 5 9 3 10 5 7 4			₹6	44	2	4	0	0	1	0	0	0	0		0 0		1	**	3 0	0	
20 13 15 6 28 15 10 4 25 11 13 5 20 14 12 7 18 6 8 7 22 22 3 7 28 16 5 6 19 12 14 8 10 13 6 7 25 17 8 3 20 10 4 2 11 7 4 3 20 10 5 7 4			2	4	2	2	0	2		0	0	0	0	0	0 2	2 0	0	0	0 0	0	
25 11 13 5 20 14 12 7 18 6 20 14 12 7 18 6 8 7 2 22 3 7 2 6 19 10 13 6 7 10 13 6 7 10 10 13 6 7 11 7 19 7 5 11 10 7 6 11 10 5 7 4 10 10 5 7 4 4 10 10 5 7 4 4			5	ю	2	ю	٠	**	0	0	2		0	0	0 2		. 0			X.	87
25 11 13 5 20 14 12 7 18 6 8 7 22 22 3 7 28 16 5 6 19 12 14 8 10 13 6 7 25 17 8 3 17 19 7 5 11 7 4 3 20 10 4 2 10 5 7 4			60	-	4	0	2	2	0	1	1	2		0	1 0		1	. 0	1 0	**	
20 14 12 7 18 6 8 7 22 22 3 7 28 16 5 6 19 12 14 8 10 13 6 7 25 17 8 3 17 7 4 3 20 10 4 2 13 5 9 3 10 5 7 4			6	0	9	4	٠		٠	2	0	0	0	1		,	-	+	1 1	0	
18 6 8 7 22 22 3 7 26 16 5 6 19 12 14 8 10 13 6 7 25 17 8 3 17 19 7 5 11 7 4 3 20 10 4 2 13 5 9 3 10 5 7 4		4 0		-	0	2	3	8	1	2	0	1	1	0	0	1	0	0	0 0		
22 22 3 7 28 16 5 6 19 12 14 8 10 13 6 7 25 17 8 3 17 19 7 5 11 7 4 3 20 10 4 2 13 5 9 3 10 5 7 4	2	9		2	5	0	2	2	2	0		0	0	0		, 0	1	0	0 0	4	
28 16 5 6 19 12 14 8 10 13 6 7 25 17 8 3 11 1 7 4 3 20 10 4 2 13 10 10 10 10 10 10 10 10 10 10 10 10 10	7 4	4	٠	•	2	o e s	٦	-	3	3	1	1	1	-	0	0	3 (0	1 0	2	96
19 12 14 8 10 43 6 7 25 17 8 3 17 19 7 5 11 7 4 3 20 10 4 2 13 5 9 3 10 5 7 4	7 1	4 1	2	3	2	T.	4	**	3	2	0	*	0	-	-	1	-	0	1 0	4	
10 13 6 7 25 17 8 3 17 19 7 5 11 7 4 3 20 10 4 2 13 5 9 3 10 5 7 4	5	1 4	2	۳	0	w	٠	•	5	0	3		2		**		0	0	0 0	0	
25 17 8 3 17 19 7 5 11 7 4 3 20 10 4 2 13 5 9 3 10 5 7 4	3 5	7		-	-	0	-	٠	2	2	2		+	2	2	2 (0	0 0	0 0	5	
17 19 7 5 11 7 4 3 20 10 4 2 13 5 9 3 10 5 7 4	7 2	2 5	1	2	2	n	2	2	0		4	2	0	0	1	2 (0	**	4 0	**	
11 7 4 3 20 10 4 2 13 5 9 3 10 5 7 4	4 2	4 6	3	2	2	4	2	ı	2		0	0	1	2	0	-		0	1	4	8
20 10 4 2 13 5 9 3 10 5 7 4	4 3	3	5	2	0	2	9	4	0	÷	+	2	-			2	4	0	0 2	3	69
13 5 9 3	6 0	5 2	. 7.		4	2	2	2	٠	2	2	0	0	2	1	0	3	-	2	2	
10 5 7 4	2 3	4 7	2	3	in	*	2	e.	0	1	0	*	3		2	2		2	0 0	4	75
9	5 2	3 2	-	2	2	0	2	4	2		2	**	+	0	1 0	0	2	0		9	П
8:30 PM 18 9 9 5 5	0	3	2	4	е	2	9	2	4	0	4	0	0	0	0	0	2	-	0	5	88
8.45 PM 10 9 3 5 2	2 2	5 3	9		2	2	3	Ψ.	4	0	2	0	÷	2	2	8	0	0	0 2	ς	71
Total 522 310 207 151 113	13 81	91 58	51	48	54	46	42	43	37	27	26	18	16	16	16 2	21 2	21	8	16 8	25	2101
Total % 24.8 14.8 9.9 7.2 5.4	3.9	4.3 2.8	3 2.4	2.3	2.6	2.2	2,0	2.0	1,8	1.3	12	0.9	0.8	0.8 0	0.8	1.0	1.0	0.4 0	0.8 0.4	4 2.6	5 100.0

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Count Name: IL-59 and Hindu Temple Entrance GAP Site Code: Start Date: 05/03/2015 Page No: 4

RECEIVED COMMUNITY DEVELOPMENT

JUL 07 2015

MEMO

VILLAGE OF BARTLETT

To: Roberta Grill

From: Brent Coulter, PE PTOE

Date: 7/7/2015

Subject: BAPS Site – Family Activity Center (Phase 4)

I have reviewed the petitioner's traffic and parking study (prepared by Gewalt Hamilton) and concur with it's general finding that within 7 years (*if not sooner in my opinion*), based on extrapolation of historic membership growth trends, the following parking and site access improvements may be required:

- a. Potential need for additional overall site parking in excess of the 96 "Phase 3a" spaces yet to be constructed.
- b. Provision of police traffic control during the Sunday worship periods and/or an added new site access on Army Trail Road due to site traffic demand exceeding capacity of the existing unsignalized IL 59 access drive.

Other specific comments at this time are shown below.

1. Approach to Determining Parking Demand for the FAC

1. The consultant's parking study assumes the new Family Activity Center will not be a new generator of vehicle trips but will provide proper building space for current site visitors/members that are currently served by existing overcrowded facilities (the traffic/parking report also cites specific instances of such overcrowding). This scenario is very similar to the M A Center in Kane County that I am currently involved with and where my initial study addressed the parking and traffic needs to support a major summer retreat attended by thousands and the conversion of existing former private school gymnasium, meeting and office space and dormitories into modernized facilities for day to day operations. I therefore understand the petitioner's approach and rationale for parking supply analysis.

My specific comments at this time are listed below.

- Observations of parking demand (occupancy) were made <u>every hour</u> on a single Sunday (May 3, 2015), with a maximum demand (occupancy) of 637 spaces. It is possible that shorter- term parking peaks within these hourly intervals could have been missed (i.e. not observed) resulting in a lower estimate of demand than actually exists (see also Comment No. 3).
- The BAPS site, with only a single access to/from IL 59, lends itself to a parking accumulation study that would begin with a base overall parking occupancy count and subsequent calculation of parking occupancy at much shorter intervals (say 15-minutes) based on the net change in vehicles in and out of the site as measured by traffic counters on the inbound and outbound lanes of the site access on IL 59.

• The findings of the consultant's approach to calculating parking adequacy for Phase 4 development consideration (based on annual growth in overall parking demand) will differ from that calculated by applying local zoning ordinance parking ratios to the various space types contained within the FAC building (i.e. seating capacity of gymnasium, office/meeting room space, etc.). Some adjustment of the aggregate parking required by the latter approach to account for shared parking potential is appropriat (i.e. to the extent that peak FAC building use and parking demand does not coincide with peak worship service parking demand). The calculated required parking supply based "zoning ordinance parking ratios" could be used to help establish added site parking on the Phase 5 parcel (see also Comment No. 3).

2. Outside Use (Rental) of FAC Facilities

Parking demand generated by the FAC should consider whether outside use (rent or lease) of space may or may not be permitted, and the scheduling and other conditions which could be attached to such use during off-peak BAPS times.

3. Overall BAPS Site Parking Supply Adequacy Based on a "Working" Parking Supply.

The need to compare proposed parking supply to observed existing parking demand, and future extrapolation of such demand, occurs frequently with "campus" oriented or mixed-use developments, where the variety and schedule of internal uses/activities do not lend themselves to standard parking ratio analysis. In these cases it is desirable and often typical to adjust parking supply downward by 10% or 15% to establish a "working" supply of parking that accounts for the effective loss of spaces in winter due to snow storage, other general parking inefficiencies, and user convenience (i.e. minimizing constant recirculation through the parking area to find that "one" available space).

When this adjustment is made to the proposed 821 BAPS spaces, parking supply life at current membership growth rates would only be a little less than 3 to a little more than 4 years, instead of the just over 7 years stated in the petitioner's parking study. This emphasizes the need to establish the "trigger" dates and conditions for future parking on the Phase 5 parcel as part of Phase 4 development action, including whether such future parking is accessed from existing internal roads connected to IL 59 or also from a new site access on Army Trail Road.

4. Future Access to/from Army Trail Road.

The petitioner's traffic study states that police traffic control at the existing IL 59 access or the addition of future Army Trail Road access may be required within seven years or so due to inadequate (gap) capacity on Il 59. As noted above, such access may be desirable to serve future site parking lot construction on the Phase 5 parcel, even if that parcel is not yet developed with commercial space.

Since there is no intervening phase of plan completion between Phase 4 currently under consideration and Phase 5 commercial development, it seems prudent to also consider the timing and conditions for Army Trail Road access as part of Village action on the Phase 4 petition.

Questions which should be addressed include:

- What traffic diversion could be expected at a new Army Trail Road access and how it would operate (with and without a future commercial building on the Phase 5 parcel)?
- Traffic control and lane configuration at this future access (i.e. would all turns be permitted, RI/RO/LI only).
- What turn lane improvements might be required on Army Trail Road to serve this access?

• What is the target ("triggers") for access construction on Army Trail Rd.?

COMMUNITY DEVELOPMENT MEMORANDUM 16-150

DATE:

August 1, 2016

TO:

The Chairman and Members of the Plan Commission

FROM:

Roberta B. Grill, Assistant Com Dev Director

RE:

(#16-05) Ashton Gardens

PETITIONER

Brad Schreiber on behalf of Ashton Gardens

SUBJECT SITE

Southwest corner of Devon and Prospect Avenues

REQUEST

Preliminary/Final PUD Plan and Special Uses for:

- (a) Planned Unit Development (PUD)
- (b) Reception/Banquet Hall (Place of Assembly)
- (c) The Serving of Liquor
- (d) Building Height

SURROUNDING LAND USES

	<u>Land Use</u>	Comprehensive Plan	Zoning
Subject Site	Vacant	Commercial	B-3 PUD
North	Attached Residential	Attached Residential (Medium Density)	PD
South	Single Family	Suburban Residential	SR-2 PUD
East	Vacant/Single Family	Open Space/ Suburban Residential	SR-4
West	Single Family	Suburban Residential	SR-2 PUD

ZONING HISTORY

This property was annexed to the Village in 1963 and was zoned Manufacturing. In 1978 the subject property was rezoned to the B-3 (Neighborhood Commercial) Zoning District and the property to the south and west of this commercial site was rezoned to the R-2 (Single Family) Zoning District. In 1988, Ordinance #88-104 approved a Site Plan for the commercial property which was reduced in size to accommodate additional single family lots to the south. This Ordinance also approved the Preliminary PUD Plan for the East Pointe Estates Subdivision which consisted of 59 detached single family lots. The Final PUD Plan for the Single Family Subdivision was approved by Ordinance #89-43.

CD Memo 16-150 August 1, 2016 Page 2

(Copies of the Historic Zoning Map, the Approved Commercial Center Site Plan and the Recorded Plat of Subdivision are attached.)

DISCUSSION

- 1. The Petitioner is requesting a **Preliminary/Final PUD** Plan review for a proposed wedding and special event facility catering exclusively to high end wedding ceremonies and receptions. The plan includes a chapel, reception/banquet hall and small office to be located on the 3.8 acre piece of vacant property located at the southwest corner of Devon and Prospect Avenues.
- 2. The Petitioner currently has similar venues in Houston and Dallas, Texas as well as Sugar Hill, Georgia and three projects under development review in Cedar Park, Texas, Marietta, Georgia and here in Bartlett.
- 3. The Petitioner is also requesting **Special Uses** for a Planned Unit Development (three principal structures located on one zoning lot), a reception/banquet hall (place of assembly), the serving of liquor and building height (Chapel 35 feet, 3 ½ inches).
- 4. The 14,367 square foot reception/banquet hall would have a maximum capacity of 300 guests. The building would be constructed with off-white stucco veneer on three exterior elevations and hardiplank siding in white along the rear/west elevation. Cast stone columns and a canopy would provide an inviting and elegant front entrance for the guests. The roof line would have a decorative cornice and parapet wall with white railing/baluster accents which would screen the rooftop mechanicals. This reception hall would be 28 feet at its highest point, while the majority of the building would be 22 feet in height. The chapel, consisting of 4,576 square feet, would have a maximum capacity of 252 guests. The building would consist of an off-white EIFS and Texas White Limestone veneer exterior with a grey shingled roof. Arched decorative windows as well as an arched entrance door would accent the front elevation. The highest point of the chapel would be 35 feet, 3 ½ inches with the lower roof line sitting at 15 feet, 7 inches. The small office building, consisting of 1,337 square feet, would architecturally complement the reception hall and chapel buildings; incorporating the off-white EIFS on the exterior, the decorative columns along the front elevation and the grey shingles on the roof. The overall height of this building would be 15 feet, 7 inches.
- 5. The hours of operation would be Monday Thursday 9:00 a.m. 7:00 p.m. for touring the facilities. If an event were to be scheduled, it would typically end before Midnight. Friday, Saturday and Sunday hours would typically be from 9:00 a.m. until 12:30 a.m. (An event may last longer if a patron pays for the extra time.) The Petitioner has agreed to reduce the hours on Sunday to close at 10:30 p.m. rather than the original 12:30 a.m. Liquor service would end ½ hour prior to the scheduled event end time and rarely would there be Sunday evening events.
- 6. The Petitioner would be requesting a Special Use to serve beer, wine and liquor and would be applying for a Class A Liquor License. The hours for the license would be Sunday through Thursday 8:00 a.m. until 1:00 a.m. Friday and Saturday hours would

be from 8:00 a.m. until 2:00 a.m. The Petitioner understands they can only serve alcohol during the times specified by the Class A Liquor License.

- 7. A four (4) foot high decorative metal fence is proposed along the north and east property lines (Devon and Prospect Avenue frontages) with matching gates across each entrance drive for security when the facilities are closed. Emergency responders would have access to the lock boxes at these locations. Trees and an eight (8) foot high solid wood fence would be located along the south and west property lines to buffer these uses from the adjacent residential properties.
- 8. The Plan identifies three access points; two along Devon Avenue and the third along Prospect Avenue. The far west curb cut along Devon would allow for loading and garbage pick-up only, while the second access located further east, is shown as a right-in/right-out for guests to enter and exit the site. (Devon Avenue is under the jurisdiction of DuPage County which has required this curb cut to be a right-in/right-out.) The Prospect Avenue curb cut will allow for full ingress and egress. A two-way drop-off and pick-up drive is located directly in front of both the chapel and reception hall to accommodate those guests requiring easier access to the entrances of each building.
- 9. A Traffic Study, prepared by Eriksson Engineering Associates, Ltd. (Eriksson), has been submitted for the Staff to review (see attached) and the Village's Traffic Consultant, Brent Coulter of Coulter Transportation Consulting, LLC (Coulter) has reviewed and commented on the study (see attached comments).
- 10. In summary, Eriksson states that "the Devon/Prospect intersection operates at a Level of Service B and this development will not have an adverse impact on the intersection. The Devon access would be 220 feet west of Prospect and the Prospect access will be 300 feet south of Devon; both will operate well within the projected traffic volumes of these uses. Weddings and receptions will primarily be held on Friday and Saturday evenings after the peak hour (5:00 p.m. 6:00 p.m.)."
- 11. The Village's Traffic Consultant concurs with the applicant's Traffic Study stating that "both (Devon and Prospect) are low volume streets and that left and right turn lanes do not appear to be warranted at the site's access drives."
- 12. The Petitioner is requesting a variation to allow for a reduction in the required number of parking spaces. This request is primarily due to the fact that the Zoning Ordinance requires parking to be calculated for each individual use (Office=5, Chapel=63 and Reception Hall=90) and does not account for multiple uses sharing parking on one site. As a result, the Zoning Ordinance would require 158 parking spaces. The PUD Plan identifies 135 spaces (23 short of the requirement). Based upon the Petitioner's observations at their other venues currently in operation, they believe 125 spaces would be the maximum number needed for this site. This is due in part that many guests will be proceeding directly from the chapel to the reception hall and that the Zoning Ordinance double counts these patrons. The Petitioner states that the 135 spaces provided on this plan are more than adequate to meet their needs.

Staff concurs and believes that those attending the chapel service will primarily be double counted and that the strict interpretation of the Zoning Ordinance provides a hardship for the Petitioner. (This variation request will be reviewed by the Zoning Board of Appeals.)

13. Below is a summary of the parking spaces provided on the site and those required in strict accordance with the Zoning Ordinance.

Parking Summary

	Parking Provided	Parking Required
Office		5 (1,337 sq. ft./275)
Reception/Banquet Hall	135	90 (300 occ/30%)
Chapel		63 (252/4 seats)
	Total = 135	Total = 158
		DEFICIT = 23spaces
		(158 - 135= 23)

14. If the 63 required spaces for the chapel are deleted, the calculation would be as follows: Office (5) + Reception Hall (90) = 95 vs. 158 (Zoning Ordinance).

However, Staff believes the 30 employees at the Reception Hall should be included in the required parking calculations in addition to the 300 maximum occupancy, and as a result, the REVISED calculation should be:

Office (5) + Reception Hall (99) = 104 TOTAL PARKING SPACES REQUIRED (well below the 135 parking spaces provided on the PUD plan.)

- 15. Coulter concurs that double counting may occur, however he suggests particular attention be given to the scheduling of events to provide a "sufficient time gap to allow those leaving a wedding and not attending a reception to have adequate time to leave and for reception guests to arrive without an overlap." He also states that because no overflow parking will be allowed on either Devon or Prospect Avenues, and it would seem obvious to most visitors to not park on Devon; that "No Parking" signs may need to be posted on Prospect due to its "more residential feel".
- 16. The Staff has requested the Petitioner contact land owners within close proximity to this site to secure an additional 20–30 parking spaces for overflow parking. The Petitioner is currently in discussions with a landowner at this time.
- 17. Landscape **variations** being requested include a reduction from the interior parkway requirement from 20 feet to 16 ½ feet along Devon Avenue and to allow one tree rather than two trees on each double parking island. The Petitioner has stated that they would prefer to plant larger trees in and around the chapel and reception hall for aesthetic purposes and to beautify these areas rather than the parking lot. In addition, the Petitioner has agreed to relocate the seven (7) trees as part of the

variation request and plant these trees along the south and west property lines to provide additional buffering for the neighbors. (These variation requests will be reviewed by the Zoning Board of Appeals.)

18. Revised Engineering, Landscaping, Lighting and Truck Turning Plans are currently being reviewed by the Staff. Please Note: Since the time of Coulter's traffic review, the Petitioner has submitted revised plans to incorporate several additional traffic comments, especially regarding truck turning movements for fire vehicles on the site.

RECOMMENDATION

- 1. Staff recommends **approval** of the Petitioner's requests subject to the following conditions and Findings of Fact:
 - a. Village Engineer approval of the Final Engineering Plans:
 - b. Staff approval of the Landscape and Photometric Plans;
 - c. The landscaping of the Property shall be provided, planted, completed and maintained in accordance with the Landscape Plan, including the addition of seven (7) trees to be planted along the south and west property lines (if the variation request is granted).
 - d. Landscaping must be installed within one year of the issuance of a building permit. If landscaping cannot be installed at the time of construction, a landscape bond must be posted in the approved amount for its future installation;
 - e. Trees shall be preserved and secured in accordance with the approved Tree Preservation Plan;
 - f. An 8 foot high, solid, wood fence with steel posts as depicted on Sheet 2 of the Preliminary/Final PUD Plan shall be installed along the south and west property lines in accordance with the Building Code;
 - g. No deliveries or garbage pick-up shall occur before 9:00 a.m.
 - h. Hours of operation shall be Monday through Thursday from 9:00 a.m. until 7:00 p.m. but if an event is scheduled, the facility shall close no later than 12:30 a.m. Hours for Friday and Saturday shall be from 9:00 a.m. until 12:30 a.m., but may be extended until 2:00 a.m. (Class A liquor license is from 8:00 a.m. until 2:00 a.m. for Friday and Saturday.) Sunday hours shall be from 9:00 a.m. until 10:30 p.m.
 - i. No outdoor events shall take place on the property;
 - j. Liquor service shall adhere to the hours outlined by the liquor license issued by the Village.
 - k. If warranted and upon a visible inspection by the Village, "No Parking" signs may be placed on Prospect Avenue, as far south as Lido Trail;
 - I. The Petitioner shall continue to negotiate with neighboring non-residential property owners to secure an overflow/valet parking area for guests if parking demand on the site exceeds the number of parking spaces provided;
 - m. The Petitioner shall coordinate sufficient time between events to allow for minimal overlap in parking demand;
 - n. Lock boxes shall be provided and access granted to the Bartlett and Countryside Fire Protection District for the gates located on both Devon and Prospect Avenues;
 - o. DuPage County Department of Transportation approval of the curb cuts proposed on Devon Avenue and copies of the permits shall be submitted to the Village prior to the issuance of a building permit;

- p. Signage shall be reviewed and approved separately by the Community Development Department in accordance with the Sign Ordinance;
- a Building permits shall be required for all construction activities;
- r. Findings of Fact: Special Uses (PUD, Banquet/Reception Hall/Place of Assembly, the Serving of Liquor and Building Height)
 - i. The proposed chapel, reception hall and office are desirable to provide a use which is in the interest of public convenience and will contribute to the general welfare of the community;
 - ii. That the proposed chapel, reception hall and office will not under the circumstances of the particular case be detrimental to the health, safety, morals or general welfare of persons residing or working in the vicinity or be injurious to property value or improvement in the vicinity;
 - iii. That the special use shall conform to the regulations and conditions specified in the Bartlett Zoning Ordinance for such use and with the stipulations and conditions made a part of the authorization granted by the Village Board of Trustees.
- s. Findings of Fact: Planned Unit Development
 - The chapel, reception/banquet hall and office are in conformance with the Comprehensive Plan and the Future Land Use Plan which identifies this site for commercial uses;
 - ii. The office use is a permitted use in the B-3 PUD Zoning District and the chapel (place of assembly) and reception/banquet hall are special uses in the B-3 PUD Zoning District;
 - iii. The PUD development is designed, located and proposed to be operated and maintained so that the public health, safety and welfare will not be endangered or detrimentally affected;
 - iv. The PUD development shall not substantially lessen or impede the suitability for uses and development of, or be injurious to the use and enjoyment of, or substantially diminish or impair the value of, or be incompatible with, other property in the immediate vicinity;
 - v. The PUD development shall include impact donations;
 - vi. Adequate utilities and drainage shall be provided for this use;
 - vii. Adequate parking and ingress and egress will be provided for this use so as to minimize traffic congestion and hazards in public streets;
 - viii. Adequate buffering and landscaping shall be provided to protect uses within the development and on surrounding properties;
 - ix. There shall be reasonable assurance that, if authorized, this facility will be completed according to an appropriate schedule and adequately maintained.
- 2. A copy of the Historic Zoning Map, the Recorded Plat of Subdivision, the Approved Commercial Site Plan from 1988, the Preliminary/Final PUD Plan, Building Elevations, Landscape Plan, the Traffic Study, Traffic Comments, Photos of existing facilities, Emails from residents, Letters of Support and additional background information are attached for your review.

April 26, 2016

Village of Bartlett, Illinois 228 S. Main Street Bartlett, IL 60103

Attention: Mr. Kevin Wallace, Village President

Village Board of Trustees

Mr. Wallace & Trustees,

Thank you for taking time to review our development application

Below are specifics for the development application to add Bartlett as the newest home to an Ashton Gardens, a nationally branded wedding and special event facilities company.

We are under contract on the property at the corner of Devon Ave. and Prospect Ave. and, as a condition of the purchase, we must obtain local government approval for the project.

The property will be home to 3 buildings, described as follows.

The office building will be occupied by our operations management and our sales and coordinating teams as well as private guest conference rooms.

The 4500 square foot chapel features a European-inspired design of carved stone, natural timber buttresses, and soaring floor-to-ceiling glass windows furnished with ceramic tile floors and upholstered pews, plus private dressing suites for the brides and grooms.

The reception facility is 14,000 square feet and seats up to 300 guests in an elegant ballroom with crystal chandeliers, elegant décor, built in bars, and a finely appointed entry "gallery". As all food preparation is conducted in-house, there is a fully equipped commercial kitchen.

The grounds will be tastefully landscaped and well maintained.

Because the property is adjacent and open to single family homes, Ashton Gardens will provide a privacy fence behind each house, the full length of the South and West perimeters of the site. The North and East property lines (along Devon Avenue and Prospect Avenue) will be protected by a decorative fence and separate accesses to the property.

We are very conscious of the concerns of the neighbors as we have 3 other properties built adjacent to neighborhoods and we have never had an incident where a resident be disturbed or inconvenienced. All activities are conducted indoors, so there is not the opportunity for excessive noise on the outside...and the building is constructed in such a way as to ensure music cannot be detected outside the building. All events are required to have private security to assist with traffic control and to monitor all outside activity.

We will have 142 parking spaces, which is quite adequate as there would never be a situation when the chapel and reception areas would be occupied to capacity at the same time. The reason is that during a wedding, guests would attend a ceremony in the chapel, then proceed to the reception building for a reception. Therefore, one or the other building would not be occupied at some point during an event and the maximum number of guests on site at any time would be the capacity of the reception building.

The trash receptacle will be a sealed container with a water tight hinged top and will be enclosed in a secured, approved structure on the service drive closest to the reception building. All deliveries are scheduled weekdays, later in the mornings.

The great majority of the events occur from Friday evening through Sunday evening and with two access points (one each on Devon and Prospect), the effect on local traffic at will be very minimal.

I would like to thank you for all of your valuable assistance throughout this process and look forward to meeting with you to further our development.

Regards,

Brad Schreiber, President Ashton Gardens

FINDINGS OF FACT FOR PLANNED UNIT DEVELOPMENTS

Both the Plan Commission and Village Board must decide if the requested Planned Unit Development meets the standards established by the Village of Bartlett Zoning Ordinance.

The Plan Commission shall make findings based upon evidence presented on the following standards: (Please respond to each of these standards in writing below as it relates to your case. It is important that you write legibly or type your responses as this application will be included with the staff report for the Plan Commission and Village Board to review.)

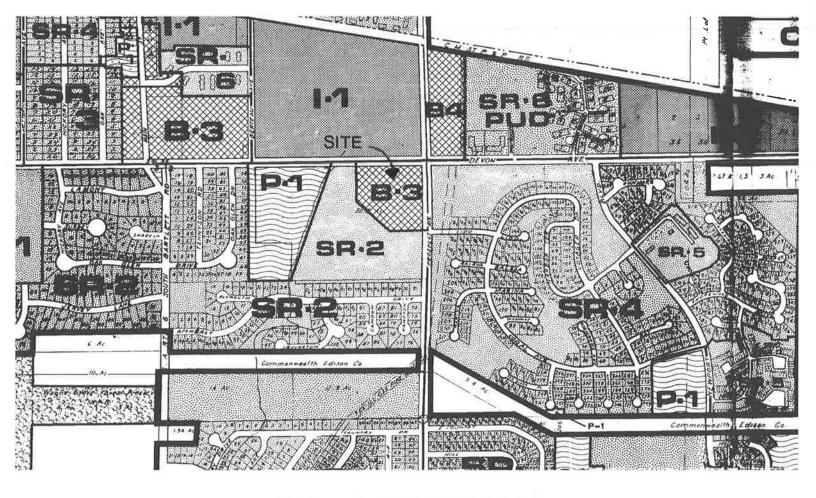
1.	The proposed Planned Unit Development is desirable to provide a mix of uses which are in the
	interest of public convenience and will contribute to the general welfare of the community.

With all existing locations, Ashton Gardens has proven to be a convenient and cooperative destination for local community organizations, governmental agencies, and the business community for social and professional uses. The high end quality of the facility will enhance the perception of the Village, substantial sales tax revenues will be generated, local businesses will benefit from more than 40,000 visitors to the area each year, and will be an eager participant in the community.

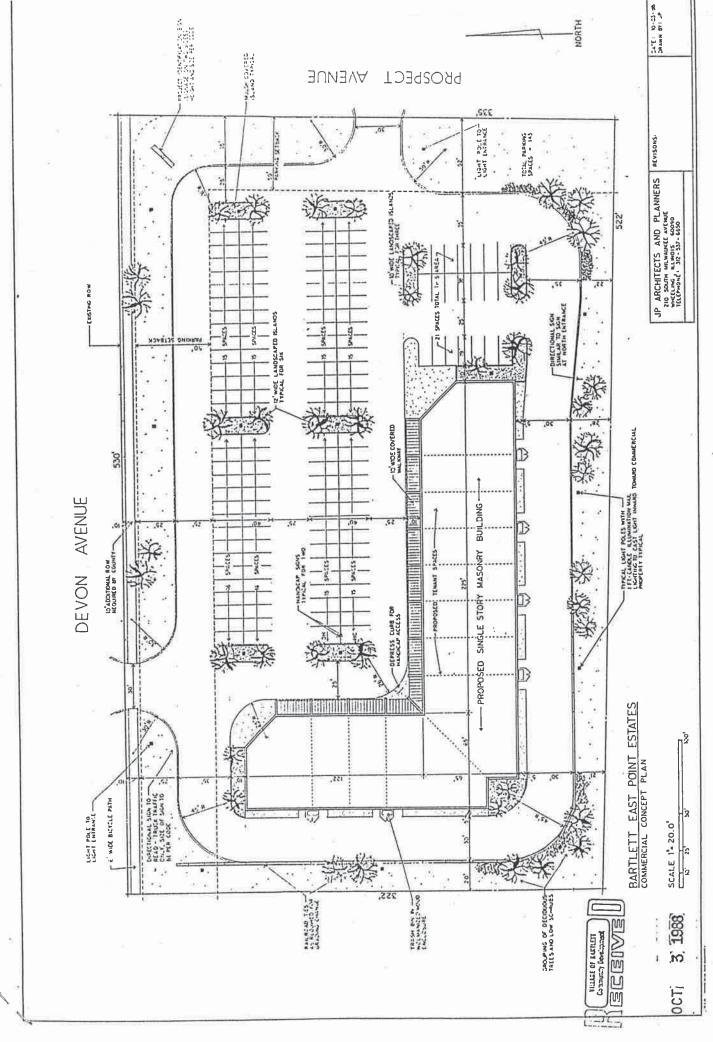
2.	The Planned Unit Development will not under the circumstances of the particular case be
	detrimental to the health, safety, morals, or general welfare of persons residing or working in the
	vicinity or be injurious to property value or improvement in the vicinity.

Ashton Gardens takes pride in extensive measures which we employ to ensure the safety of our guests through active event security; including close management of alcohol consumption; activities on the property, yet outside of the buildings as not to be disruptive to neighbors; and the practice of managing our business with the highest level of professionalism and integrity. At our other locations, Ashton Gardens has been well received by our neighbors especially when given consideration to possible alternative businesses that are not at the level of quality as our concept.

3.	The Planned Unit Development shall conform to the regulations and conditions specified in the
	Title for such use and with the stipulation and conditions made a part of the authorization granted
	by the Village Board of Trustees.


With the Village staff's excellent communication and eagerness to help, we have been, and will continue to ensure our project development is in full compliance with Title specifications and requirements. Where we have areas of uncertainty, we contact the Village and get immediate direction so our progress stays on the correct path.

4,	The proposed uses conform to the Comprehensive Plan and the general planning policies of the Village for this parcel.
	Ashton Gardens has received confirmation on the use of parcel via concept plan submittal and attendance of Village Board meetings. The project conforms with the Comprehensive Plan which identifies this property for commercial use.
5.	Each of the proposed uses is a permitted or special use in the district or districts in which the Planned Unit Development would be located.
	The site will consist of a small administrative office building, a chapel in which to host wedding ceremonies, and a reception building to host wedding receptions (following the ceremonies), corporate and social events, meetings, etc.
ì	
б.	The Planned Unit Development is designed, located and proposed to be operated and maintained so that the public health, safety and welfare will not be endangered or detrimentally affected. The project will not be detrimental to the public health, safety, and welfare nor be detrimental in any fashion. The design and aesthetics of the facilities and the site convey a high end, high quality image that compliments the community. Every possible measure is taken to ensure that all event activities are managed s not to effect or disturb the
	community or our neighbors in any way.
7.	It shall not substantially lessen or impede the suitability for permitted use and development of, or be injurious to the use and enjoyment of, or substantially diminish or impair the value of, or be incompatible with, other property in the immediate vicinity.
	The project will not be injurious and will not impede enjoyment of other property owners using their yards or property within the immediate vicinity. Ashton Gardens improves the public perception of the area in which we develop a business. The parcel could be home to many other types of businesses such as convenience stores, strip centers, or other entities that have a far less public perception. There is an added value to local businesses, increased tax base, and the community as a whole given consideration to the quality and number of guests that will seek out Ashton Gardens in Bartlett.


8.	Impact donations shall be paid to the Village in accordance with all applicable Village ordinances in effect at the time of approval.
	Ashton Gardens will comply with any ordinances related to the impact of this development.
9.	The plans provide adequate utilities, drainage and other necessary facilities.
	The engineering of the project will provide all necessary utilities, infrastructure, and other requirements as dictated by local ordinances and direction of Village staff. There will be more than ample parking for the proposed uses.
10.	The plans provide adequate parking and ingress and egress and are so designed as to minimize traffic congestion and hazards in the public streets.
	Traffic entering and exiting the property will be eased to the best possible extent with the use of two access points, one on Devon Ave. and one on Prospect Ave. per the recommendation of Village staff. Also very few of the days and times the facility is in use does not coincide with "rush hour".
11	The plans have adequate site area, which area may be greater than the minimum in the district in which the proposed site is located, and other buffering features to protect uses within the development and on surrounding properties.
	The residential sites adjacent to the parcel do not have a barrier at the adjoining property line. Ashton Gardens will build provide a landscape buffer, a fence along said property lines, or a combination of both.
	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10

12. There is reasonable assurance that, if authorized, the PUD will be completed according to schedule and adequately maintained.

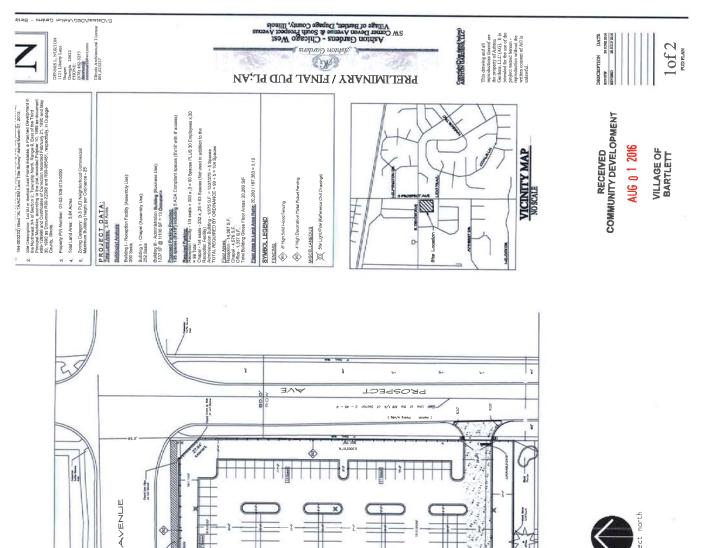
When developing an Ashton Gardens facility, it is critical that the construction be completed on or before the scheduled date, because for months before opening, we sell dates for events beginning very close to the completion date, thus, should we go beyond the scheduled completion date, events must be cancelled...which would be very detrimental to our reputation. The appearance and upkeep of the property is key to maintaining our upscale, professional image and is never compromised.

HISTORIC ZONING MAP

A PLANNED UNIT DEVELOPMENT PLAT PRATT PRAT 200 A 44 CO ေသည် မို့မြင့် ထိတ်ဝင်လို ကရုပင်လိုက်တွင် လိုက်ခေါက်လေတိုင်း ဘက်ညကို ရှိလေတြကိုမို့ ခွေမွေခွေမှန်နှစ်မှန် မို့မြိတ်ပြုတို့သို့သည်။ PREPARED FOR: JOHN GIANNINI. 525 WISE ROAD SCHAUMBURG,ILL 6 BARTL **₹** 9 10210 01 6 # 94 122 03 64.70€ #, \$7,90.00 S ,00 ts 1 DRIVE HL 4EBA COMMERCIAL 13 90 AVE DRIVE N 80*43 5935 V4 SC 2-40-8 700 DEDICATED DRIVE JAN 26 HEREBY 2000 111166 DEVON 8 COUNTRY CREEK UNIT NO.3 DOC 78 07757 - 19 K(1--28 HERE TO FORE 100 DRIVE 27 HILLANDALE 10 53 AREAS OF LOT EG EXCEPT THOSE OBCUPTED BUILDINGS OR SPECIFIC EASTERNING AND FOR ESCHERING FOR EXPERIMATER ELECTRIC IN MATERS AND ESPECIF FOR VILLAGE OF PARTICIPITY AND ALL UDBLIES AND LITY COMPANYES WITH INVERSIT IN SAID LOR. NO ACEES 19 ALLOWED TO DR PROM LOTS 34 THRU 40 AND LOTS TO PROSPECT AVE NO ACESS IS ALLOWED TO DIP FROM LOTS 12 AND 13 TO DEVON AVE. TT3JARAB 40 MILLAGE ALL BY B CDNS CAS, THE NOTE

A89-126996 Pscok 143 Fage 25

POINTE


BARTLETT EAST POIN ESTATES Proge 1 of 2

Propored by Noryconek Miros Rysierd Ind Suvery 7880 107 South Bonomydek Rt., Sile Lt. Bonomydek Rt., Sile Lt.

Case #16-05

Ashton Gardens

RECEPTION 14,367.55.

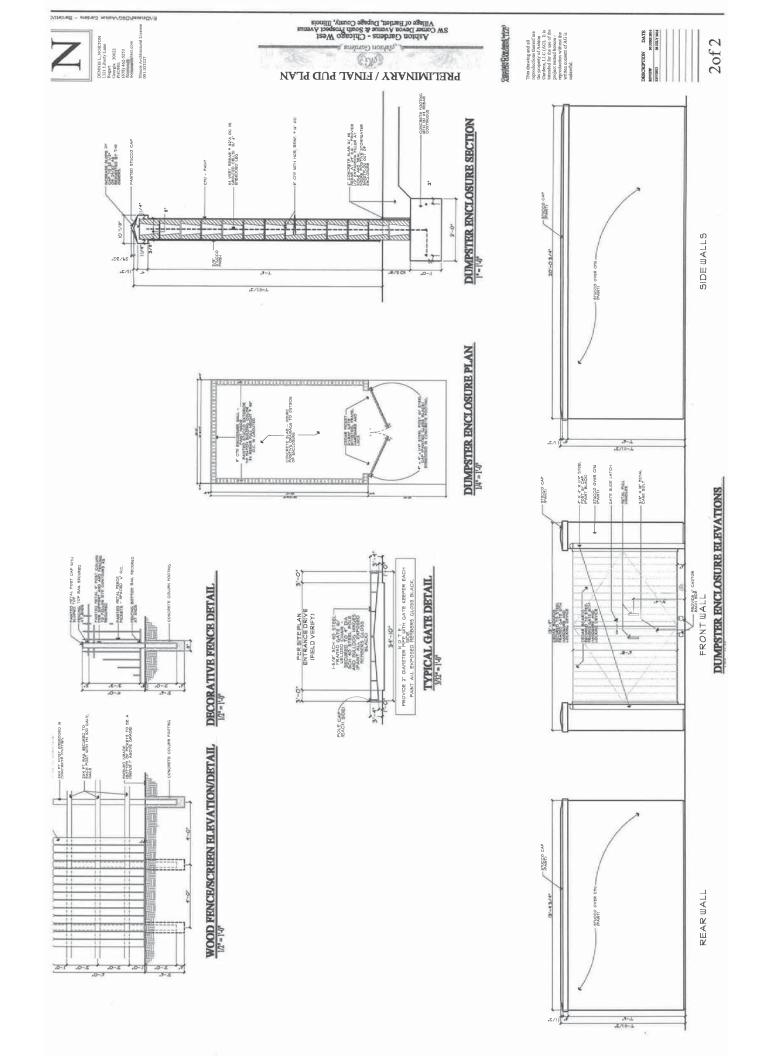
1

CHAPEL 4,576 5,F.

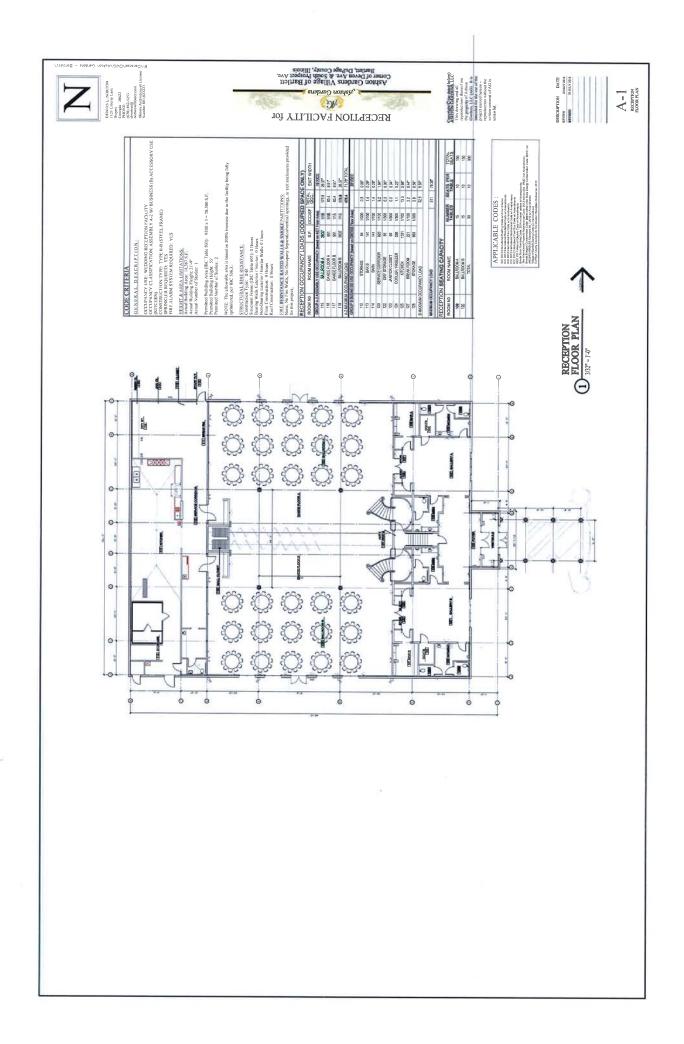
27272

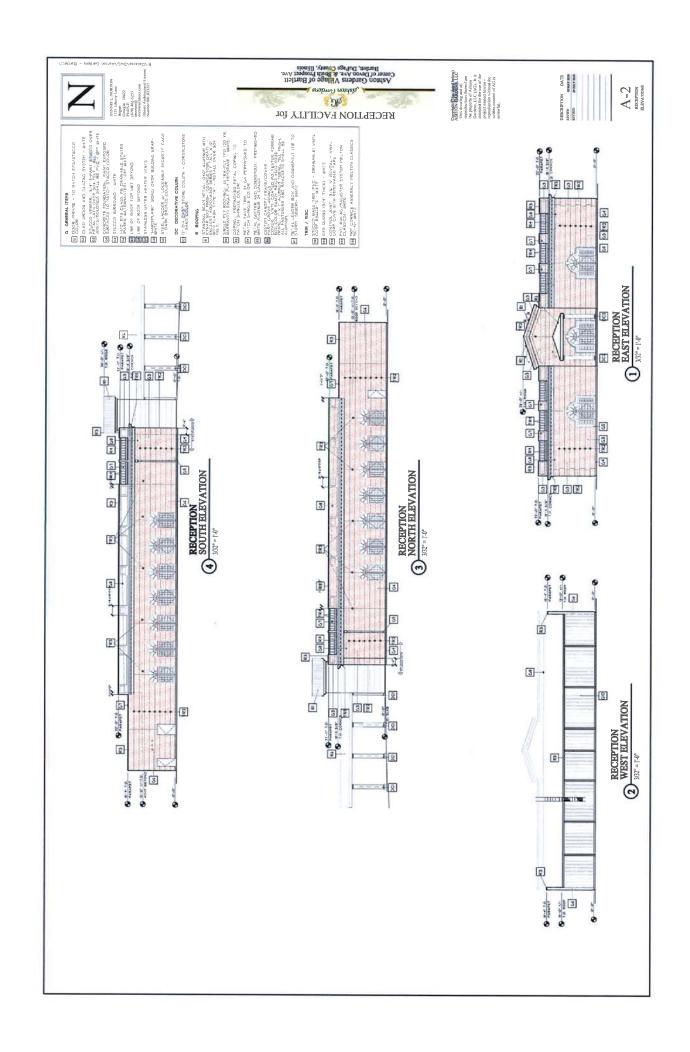
1

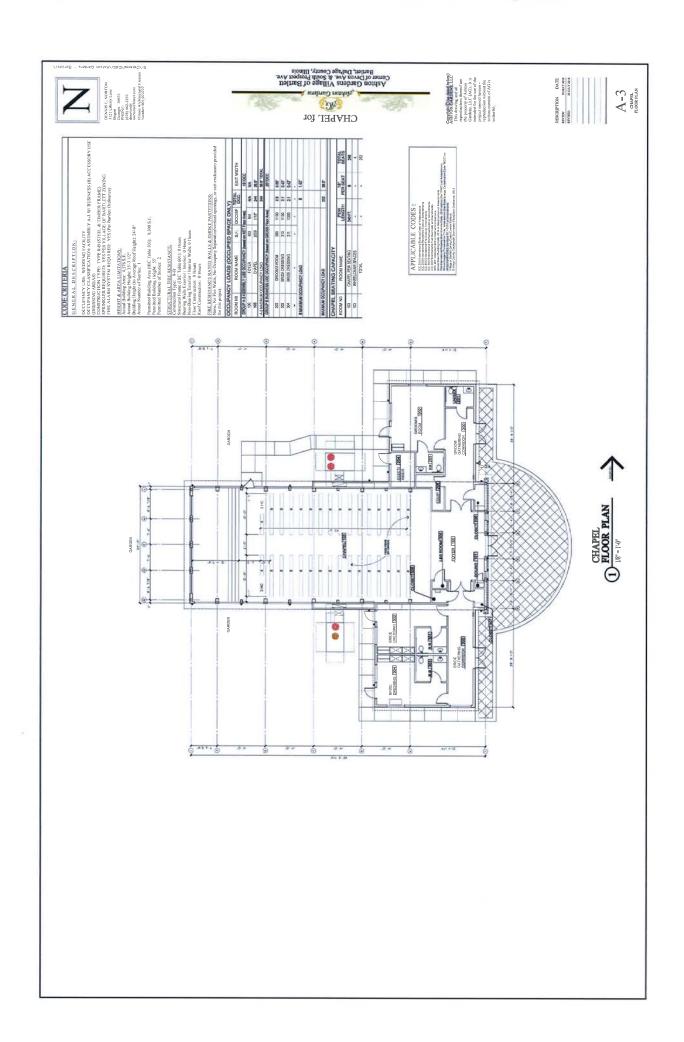
4 Come 4 Come 11/7 for the 3u0 of tel Come

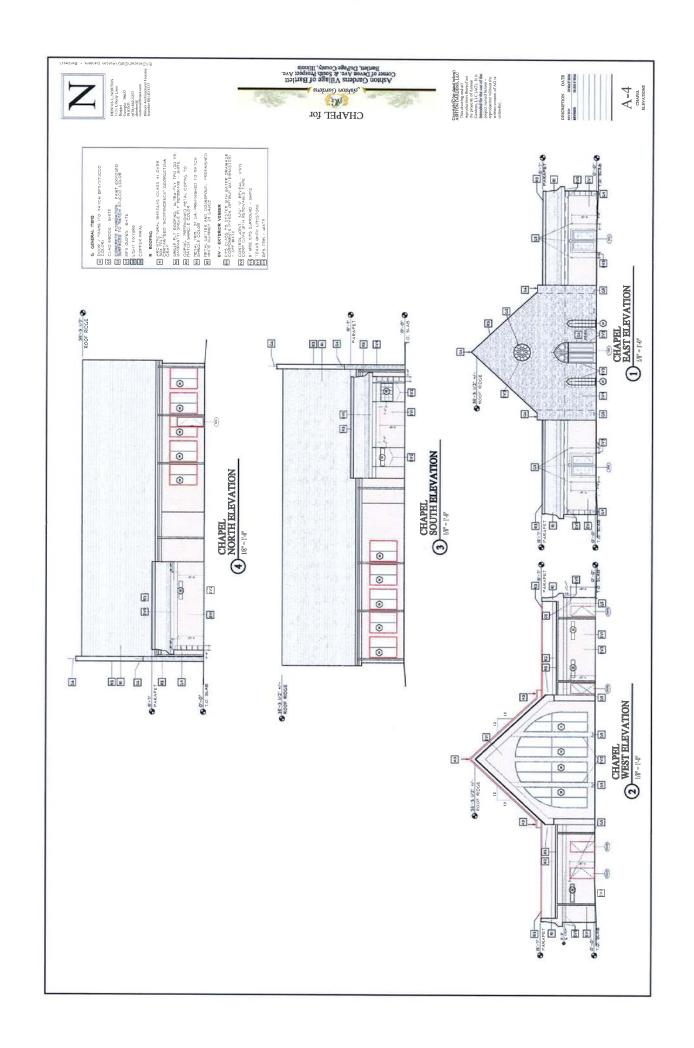

学 数00

DEVON

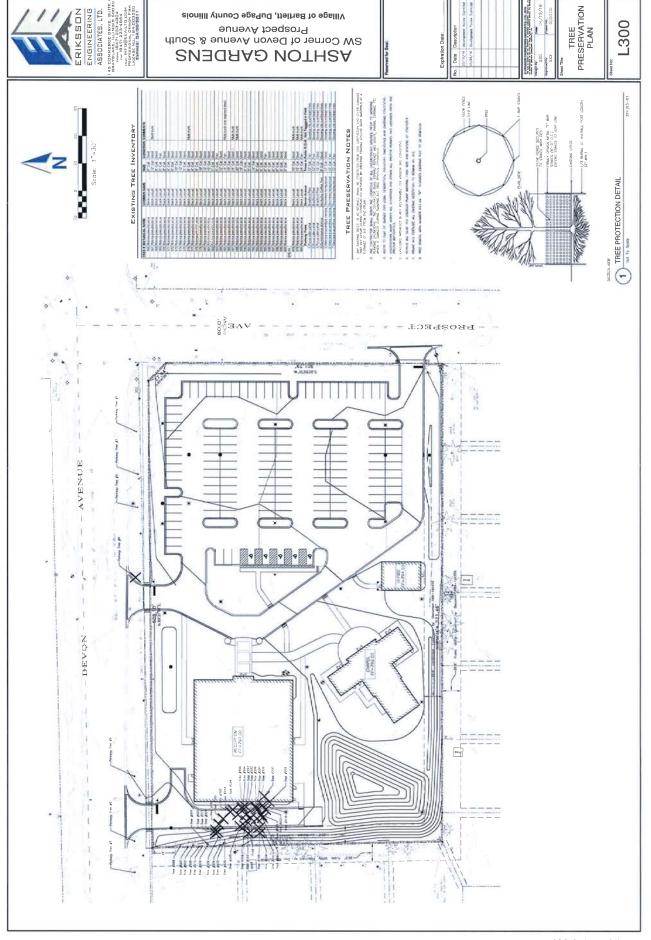

P. P. EGSTIG SPETATH

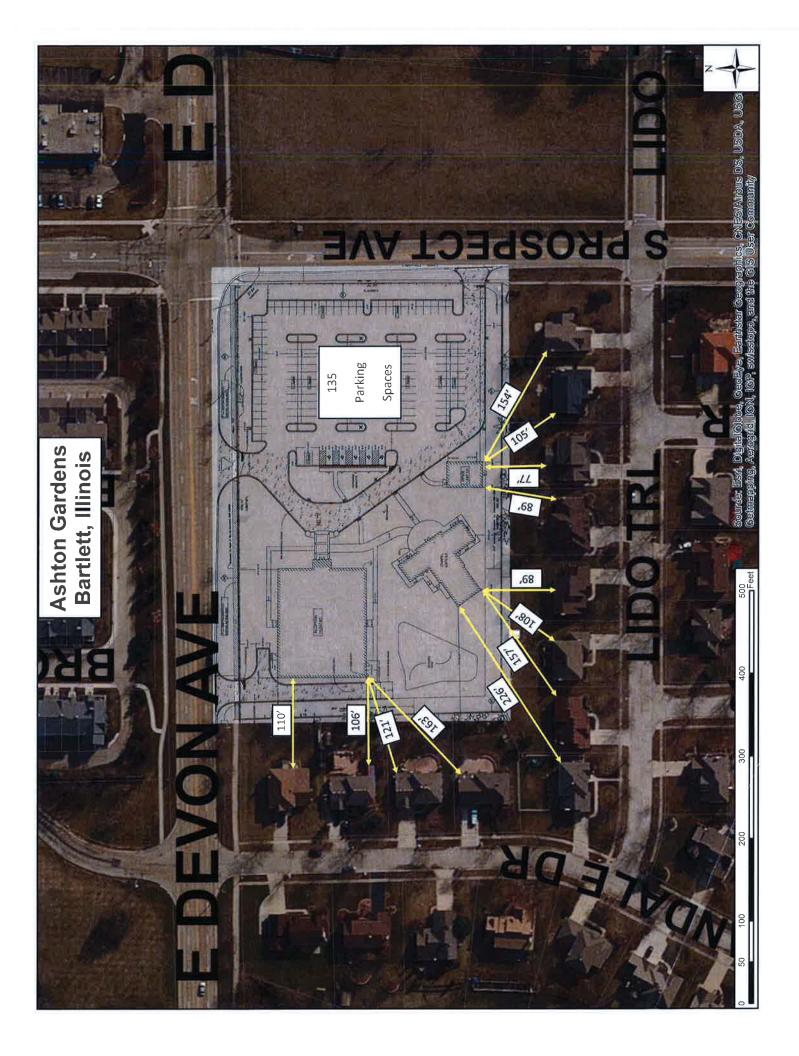


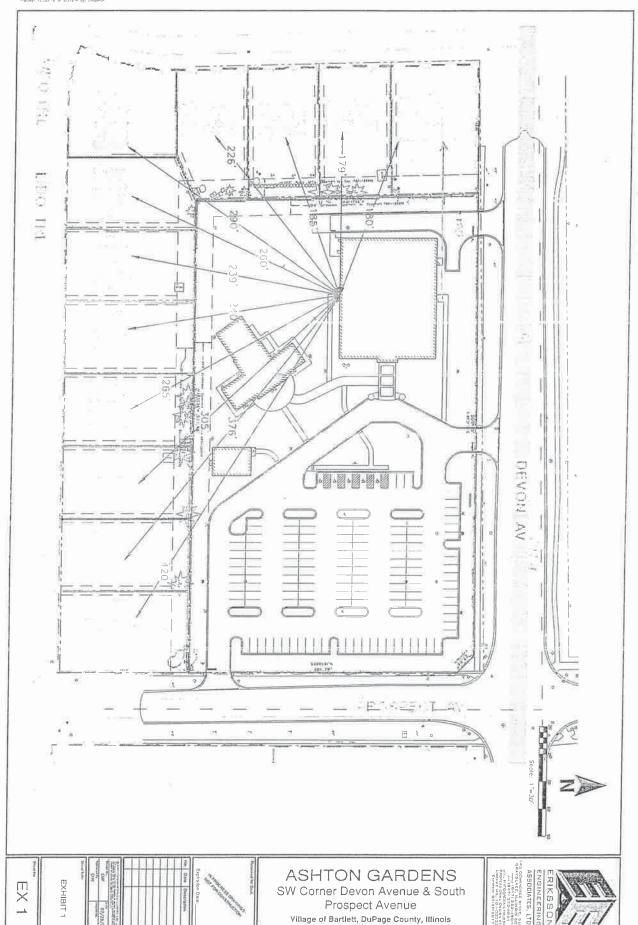


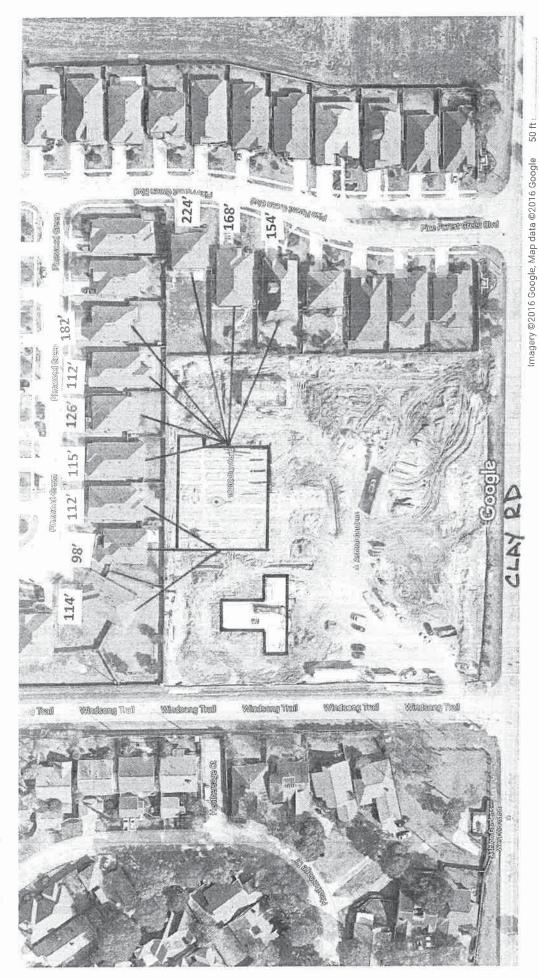












Village of Bartlett, DuPage County Illinois

Ashton Gardens Houston West Adjacent Residences

RECEIVED COMMUNITY DEVELOPMENT

AUG 0 2 2016

ASHTON GARDENS DALLAS / FT. WORTH Neighboring Property Values

VILLAGE OF BARTLETT

Property Street	2016	2015	2014	2013	2012	2011	Increase 2011-16
Post Oak Cir	235,000	216,500	210,168	192,215	192,500	192,500	22.08%
1	248,902	235,124	212,873	195,191	199,852	215,494	15.50%
	251,175	237,814	216,236	199,090	203,610	218,778	14.81%
	V-1701		,		Average	By Street	17.46%
Wood Edge Ct	237,301	223,940	202,362	185,216	189,736	204,904	15.81%
	263,500	250,000	235,087	215,649	220,768	237,943	10.74%
	290,882	277,062	226,700	207,670	214,100	224,405	29.62%
	275,281	260,055	235,524	215,990	221,127	238,367	15.49%
	246,000	234,700	212,900	194,090	200,100	213,135	15.42%
	271,278	259,690	235,537	210,000	210,000	210,000	29.18%
					Average	By Street	19.38%
Fair Oaks Cir	245,000	220,000	220,000	215,000	215,000	215,000	13.95%
1	262,226	249,604	205,000	194,308	197,670	200,000	31.11%
	240,553	230,000	217,911	195,000	195,000	195,000	23.36%
					Average	By Street	22.81%
Hayden Ln	221,111	217,000	201,035	180,000	180,000	180,000	22.84%
	236,077	237,565	215,585	198,130	202,669	213,738	10.45%
	287,036	273,244	226,000			243,414	17.92%
	214,482	203,302	184,055	169,215	,215 173,202 183,719		16.74%
	243,740	231,897	209,137	191,035	195,745	208,754	16,76%
	240,700	228,998	206,509	188,621	193,276	206,139	16.77%
					Average	By Street	16.91%

Overall Average

18.81%

ASHTON GARDENS HOUSTON NORTH Neighboring Property Values

Property Street	2016	2015	2014	2013	2012	2011	Increase 2011-16								
Kenchester		139,735	127,032	115,484	117,794	117,794	18.63%								
		149,433	135,849	124,784	123,736	123,736	20.77%								
		151,539	128,331	117,210	117,210	117,210	29.29%								
		90,729	78,665	73,015	73,015	73,015	24.26%								
		138,832	126,211	114,738	113,317	113,317	22.52%								
	Average By Street 23.09%														
Glouchester		111,217	111,217	111,217	119,709	119,709	-7.09%								
		139,266	126,606	115,097	123,550	120,550	15.53%								
		143,003	130,003	118,185	120,000	120,000	19.17%								
		156,370	142,500	129,546	139,128	139,128	12.39%								
		155,437	141,307	128,461	133,934	133,934	16.05%								
	2 3/10/11/20/11/2			Av	erage By Str	eet	11.21%								

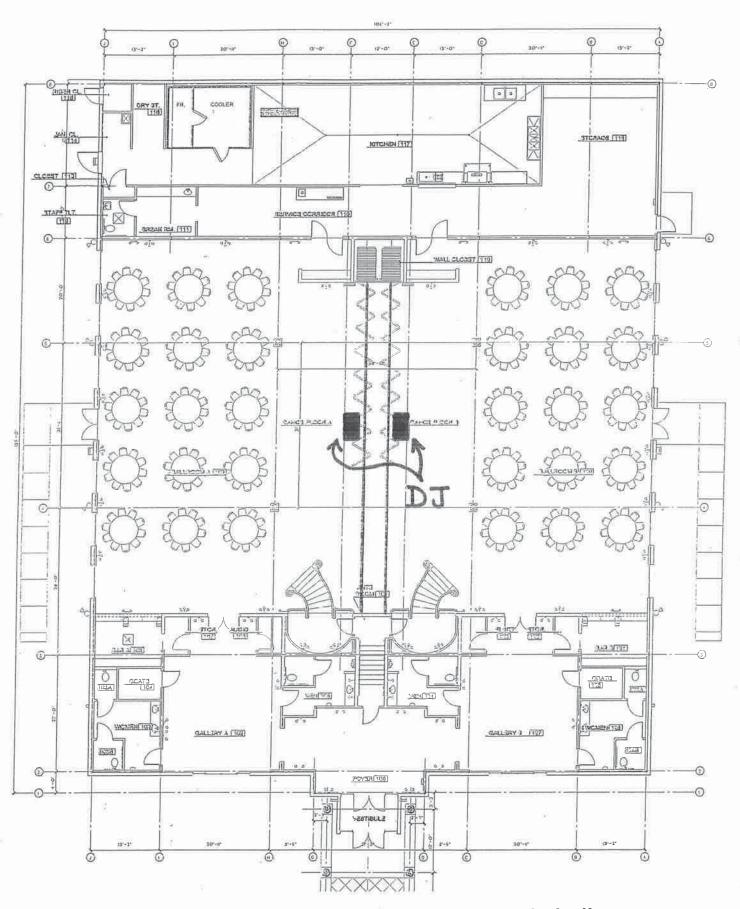
Overall Average

17.15%

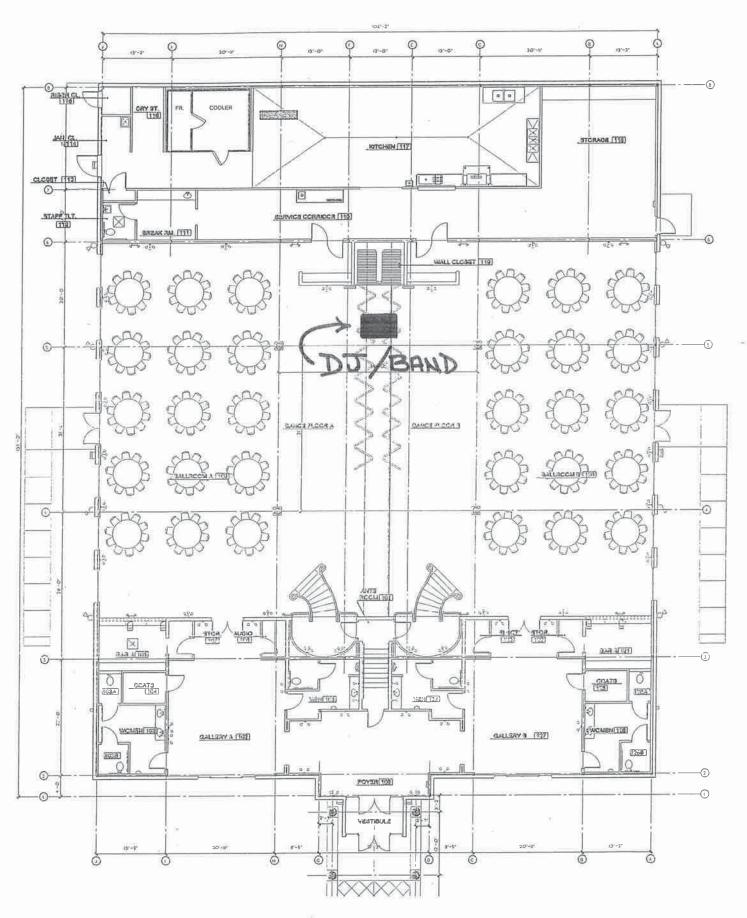
ASHTON GARDENS DECIBEL LEVEL / NOISE ANALYSIS

Performed at Ashton Gardens Houston West

Location is very similar to Bartlett location in that the site is flanked by intersecting 4 lane road and a 2 lane road as well as similar proximity of residents

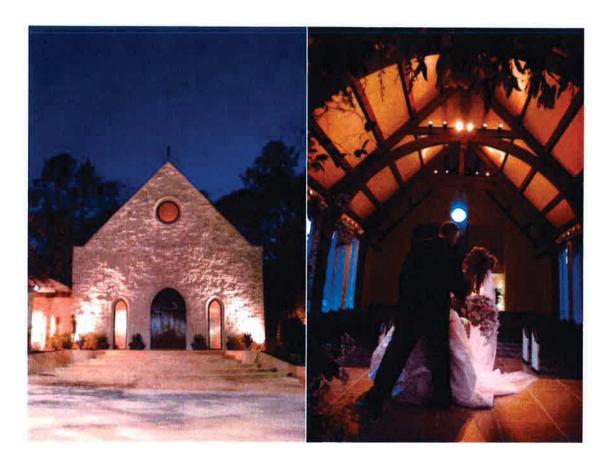

Locations and Levels of Decibel Readings & Criteria

- DJ playing music at peak dance time
- DJ with back to center divider wall
- DJ facing exterior window wall with exit door
- Reading #1 inside ballroom, in front of DJ, interior far corner: 98 100 decibels
- Reading #2 outside ballroom, 25 feet from window wall and exit door: 74 80 decibels
- Reading #3 outside ballroom, 75 feet from window wall and exit door: 70 74 decibels
- Reading #4 outside ballroom, 130 feet from window wall and exit door: 70 74 decibels


Notation: outside readings ranges were a result of normal traffic detected on Clay Road

Comparative Decibel Levels of Common Sounds

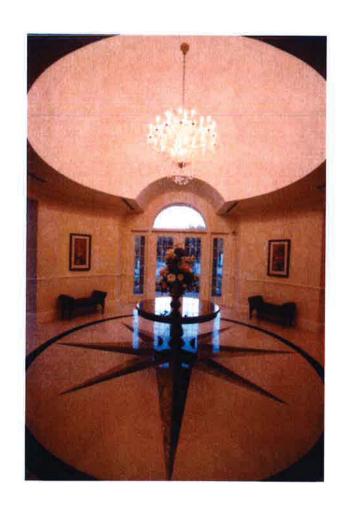
Sound (dB)	Sound noise (with distance)
0 dB	Hearing threshold
10 dB	Distant rustling of leaves
20 dB	Whisper close up
30 dB	Quiet rural area
40 dB	Quiet library
50 dB	Conversation at home
60 dB	Conversation in a bar
70 dB	Vacuum cleaner at 3ft. (1m)
80 dB	Close alarm clock
90 dB	Operating a lawn mower
100 dB	Speaker in a club 3ft. (1m) away
110 dB	Vehicle horn 3ft. (1m) away
120 dB	Chain saw close up (discomfort)
130 dB	Jack hammer (pain threshold)
140 dB	Jet engine (pain threshold)
150+ dB	Eardrum rupture

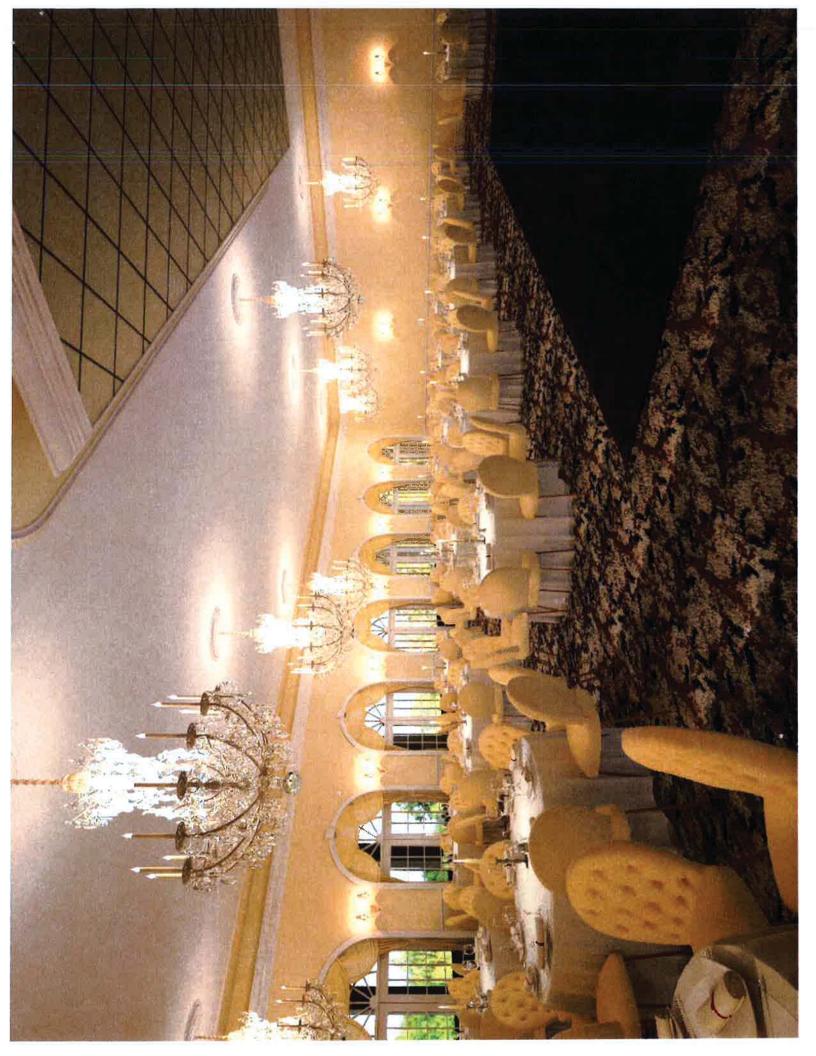


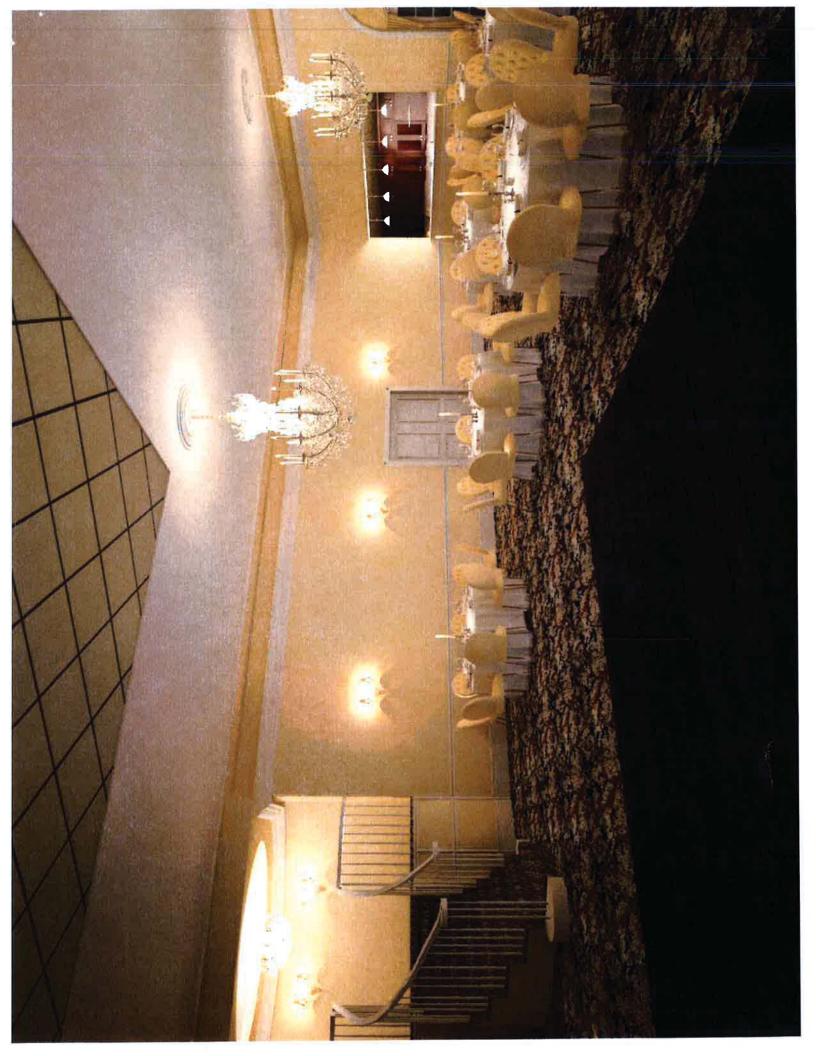
Location of DJ's with divider walls closed - single ballroom event

Location of DJ or band with divider walls open - double ballroom event

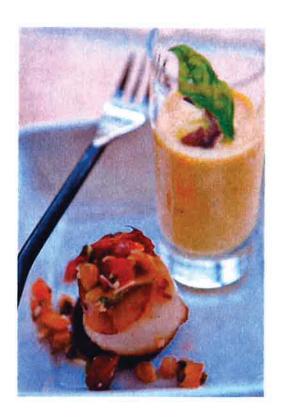
Intimate Ceremonies



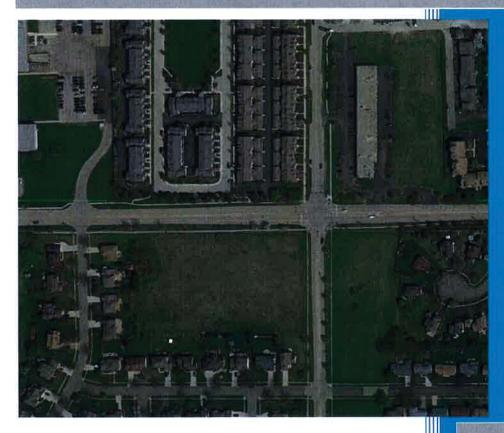

Elegant Receptions







Exquisite Cuisine



April 2016

Ashton Gardens

Traffic and Parking Study

Prepared for:
Dennis L. Norton
Architect

Eriksson Engineering Associates, Ltd.

145 Commerce Drive, Suite A Grayslake, IL 60030

(847) 223-4804

601 W. Randolph St., Suite 500

Chicago, IL 60661

(312) 463-0551

ERIKSSON ENGINEERING ASSOCIATES, LTD.

INTRODUCTION

Eriksson Engineering Associates, Ltd. was retained by Dennis L. Norton Architect to conduct a traffic impact and parking demand study for a proposed wedding chapel and reception hall in Bartlett, Illinois. The proposed site is located on the south side of Devon Avenue and west of Prospect Avenue.

The purpose of the study was to observe the existing traffic patterns around the site, determine the traffic characteristics of the proposed development, review the parking needs, and develop roadway and parking recommendations.

EXISTING CONDITIONS

Site Location and Area Land-Use

The subject site is currently vacant and located at the southwest corner of Devon and Prospect Avenues in Bartlett, Illinois. Uses around the site include single-family residential to the west and south, multi-family residential to the north, and vacant land/single-family residential to the east. Industrial buildings are located to the northwest and a retail building to the northeast. **Figure 1** illustrates the site and the surrounding land-uses and roads (All figures are located at the end of the report).

Bicycle and Pedestrian Routes

Designated bike routes are located on the south side of Devon Avenue and on Prospect Avenue north of Devon Avenue. Public sidewalks are provided along the site's frontage on both sides of each road.

Roadway Characteristics

A description of the area roadways providing access to the site is provided below:

Devon Avenue (DuPage County 6) is a four-lane east-west undivided arterial with a posted speed limit of 35 mph. A multi-use path is provided along the south side of Devon Avenue adjacent to the site. At its signalized intersection with Prospect Avenue, it widens out to provide separate left-turn lanes. Devon Avenue is under the jurisdiction of DuPage County Division of Transportation.

Prospect Avenue is a three-lane north-south collector with a striped center median and a posted speed limit of 30 mph south of Devon Avenue and 25 mph north of Devon Avenue. Sidewalks are provided on both sides of the street. A left-turn lane is provided at the Devon Avenue intersection. Prospect Avenue is under the jurisdiction of Village of Bartlett.

Existing Traffic Volumes

Friday evening (4:00 to 7:00 PM) and Saturday evening (4:00 to 7:00 PM) manual traffic counts were conducted in April, 2016 at the intersection of Devon and Prospect Avenues. These counts showed the peak-hours of traffic occurring 5:00 to 6:00 PM on Friday and 5:30 PM to 6:30 PM on Saturday. At the intersection of Devon and Prospect Avenues, the Saturday counts were 39% lower than the Friday volumes. The existing traffic volumes are shown in **Figure 2** and included in the **Appendix**.

SITE TRAFFIC CHARACTERISTICS

Site Plan

Ashton Gardens is a wedding chapel and banquet facility that provides a single location for a wedding party and their guests to attend a ceremony and then stay for the reception. The site plan calls for the construction of three buildings on the property with a small 1,000 square foot office, a wedding chapel accommodating up to 244 persons, and the banquet hall holding 300 persons with 30 serving staff. A total of 142 parking spaces are proposed with six accessible spaces. A combined drop-off/loading lane is located in the front of the chapel and banquet hall. Refuse pick-up will be located on the west side of the building. Full access points are proposed Devon and Prospect Avenues.

Trip Generation

Weddings and the receptions are mostly held in the evenings after peak commuter traffic. The busiest days will be Fridays and Saturdays. Approximately 85% of the guests will arrive for the wedding ceremony while the rest come later for the reception. The vehicle occupancy rate is 3 persons per vehicle. The resulting site traffic volumes are shown in **Table 1**.

Table 1
Ashton Gardens Site Traffic Volumes

Fri	iday Ever	ning	Satu	rday Eve	ening
ln	Out	Total	ln	Out	Total
70	10	80	70	10	80

To be conservative, these volumes were combined with the peak-hour traffic volumes from the counts. Event start times will vary on a day to day basis.

Trip Distribution

The trip distribution to the site is based on a combination of the existing traffic volumes, the distribution of residences in the area, and the regional road network. The distribution of traffic is shown on **Table 2** and **Figure 3**.

Table 2
Directional Distribution

Direction	Distribution
North on Prospect Avenue	10%
South on Prospect Avenue	10%
East on Devon Avenue	50%
West on Devon Avenue	30%
Total	100%

ERIKSSON ENGINEERING ASSOCIATES, LTD.

Trip Assignment

The future vehicular trips that are generated by the development were distributed to the adjacent roadways based on the directional distribution analysis and the proposed site plan. **Figure 4** displays the trip assignment for the development's traffic volumes. **Figure 5** shows the Total Traffic volumes, which is the sum of the existing traffic volumes and the projected site traffic volumes.

ANALYSES

Intersection Capacity Analyses

An intersection's ability to accommodate traffic flow is based on the average control delay experienced by vehicles passing through the intersection. The intersection and individual traffic movements are assigned a level of service (LOS), ranging from A to F based on the control delay created by a traffic signal or stop sign. Control delay consists of the initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. LOS A has the best traffic flow and least delay. LOS E represents saturated or at capacity conditions. LOS F experiences oversaturated conditions and extensive delays. The <u>Highway Capacity Manual</u> definitions for levels of service and the corresponding control delay for both signalized and unsignalized intersections are shown in **Table 3**.

Capacity analyses were conducted for each intersection using the HCS computer program to determine the existing and future operating conditions of the access system. These analyses were performed for the weekday peak-hours. Copies of the capacity analysis summaries are included in the **Appendix**. **Table 4** shows the existing and projected level of service and vehicular delay results for each intersection.

Table 3
Level of Service Criteria for Intersections

Level of	Description	Control Delay (seconds/vehicle)						
Service		Signals	Stop Signs					
Α	Minimal delay and few stops	<10	<10					
В	Low delay with more stops	>10-20	>10-15					
С	Light congestion	>20-35	>15-25					
D	Congestion is more noticeable with longer delays	>35-55	>25-35					
E	High delays and number of stops	>55-80	>35-50					
F	Unacceptable delays and over capacity	>80	>50					

Source: Highway Capacity Manual 2010

Devon Avenue Access Drive

The proposed driveway on Devon Avenue will have one inbound lane and one outbound lane under stop sign control. It is 270 feet west of Prospect Avenue and will operate well with the projected traffic volumes. A separate left-turn lane is not required on Devon Avenue.

Prospect Avenue Access Drive

The proposed driveway on Prospect Avenue will have one inbound lane and one outbound lane under stop sign control. It is 300 feet south of Devon Avenue and will operate well with the projected traffic volumes.

Table 4
Intersection Level of Service and Delay

	Frid	lay Evening	Saturday Evening					
Intersection	Existing	Total	Existing	Total				
Devon Avenue at Prospect Avenue (Signalized)	LOS B-16.5	LOS B-16.5	LOS B-18.8	LOS B-18.5				
Ashton Gardens Access On Devon Avenue (Stop Controlled)		Nb Lt/Rt-LOS B-12.1 Wb Lt –LOS A-0.5		Nb Lt/Rt-LOS B-10.2 Wb Lt –LOS A-0.8				
Ashton Gardens Access On Prospect Avenue (Stop Controlled)		Eb Lt/Rt-LOS B-10.3 Nb Lt –LOS A-0.4		Eb Lt/Rt-LOS B-10.1 Nb LtLOS A-0.4				

Devon Avenue at Prospect Avenue

The signalized intersection works well today with a good level of service and minimal vehicular delays. The proposed development will not have an adverse impact on the intersection.

Delivery/Refuse Access

The proposed delivery/refuse driveway on Devon Avenue will have one inbound lane and one outbound lane under stop sign control. It is 500 feet west of Prospect Avenue. Deliveries will be between 9:00 AM and 1:00 PM. Approximately eight trucks will make deliveries throughout the week.

PARKING

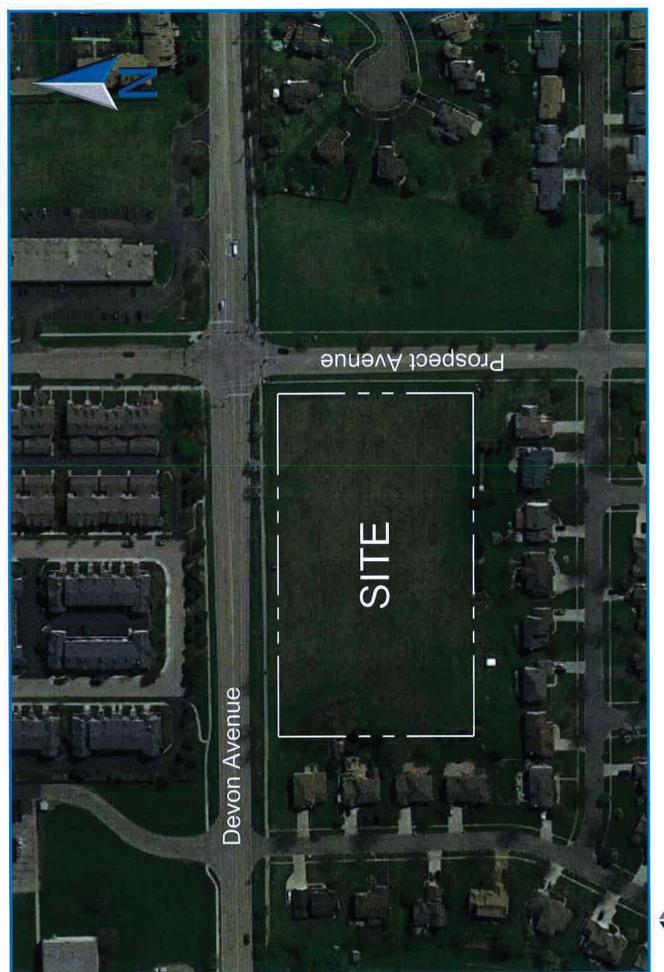
Parking requirements for the development were calculated based on the Village of Bartlett Zoning Code. **Table 5** shows the parking required by code for each component of the project.

Table 5
Zoning Code Parking Requirements

Use	Size	Zoning Code	Required Parking
Chapel	244 seats	One spaces for every 4 seats	61 spaces
Reception Hall	300 persons and 30 staff	Parking space shall be provided equal to 30 per cent of the capacity of the facility in persons.	99 spaces
Office	1,000 sq. ft.	One Space for every 275 sq. ft.	4 spaces
		Parking Required	164 spaces
		Parking Provided	142 spaces

The proposed site plan has a total of 142 parking spaces, including 6 accessible spaces, and provides 86% of the zoning code requirement. It exceeds the accessible requirement of 5 spaces. A small parking variation is required for 16 spaces.

ERIKSSON ENGINEERING ASSOCIATES, LTD.


Zoning codes are based the assumption that the individual components of a development are occupied at the same time. Ashton Gardens provides the convenience of a single-location for a wedding and reception so the guests can drive and park once. The peak use of the office space is during the day when staff is planning for upcoming events. During events, the staff will be assisting at the chapel and reception hall and not in the office. The chapel and the reception hall will only be used in conjunction with one event. They are not going to schedule two different events at the same times that could create a parking problem. With the reception hall as the biggest user on the site, the code would require 99 spaces which is less than the 142 spaces provided.

Discussions with the Ashton Gardens operator indicate that the peak parking demand is 125 vehicles at their other facilities.

SUMMARY

This report summarizes the results of traffic and parking study for a proposed Ashton-Garden wedding chapel and reception hall in Bartlett, Illinois. The findings of the study are:

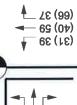
- The volume of traffic generated by the development will have no adverse impact on peakhour traffic conditions on Devon or Prospect Avenues.
- Access to the site will be provided by three full access drives:
 - A delivery/refuse drive on the west side of the building on Devon Avenue.
 - o A full access drive on Devon Avenue
 - A full access Drive on Prospect Avenue.
- An on-site loading space is provided in on the west side of the reception hall for deliveries and refuse pick-up.
- The Village Zoning Code requires 164 parking spaces based on the simultaneous usage of all three buildings on the site. With 142 parking spaces provided, a parking variation of 16 spaces is required.
- The proposed usage of the development and the parking information from other facilities indicate the parking demand would be less than 125 vehicles.

Site Location & Area Roadways

LEGEND

- Friday Peak 8
- Saturday Peak

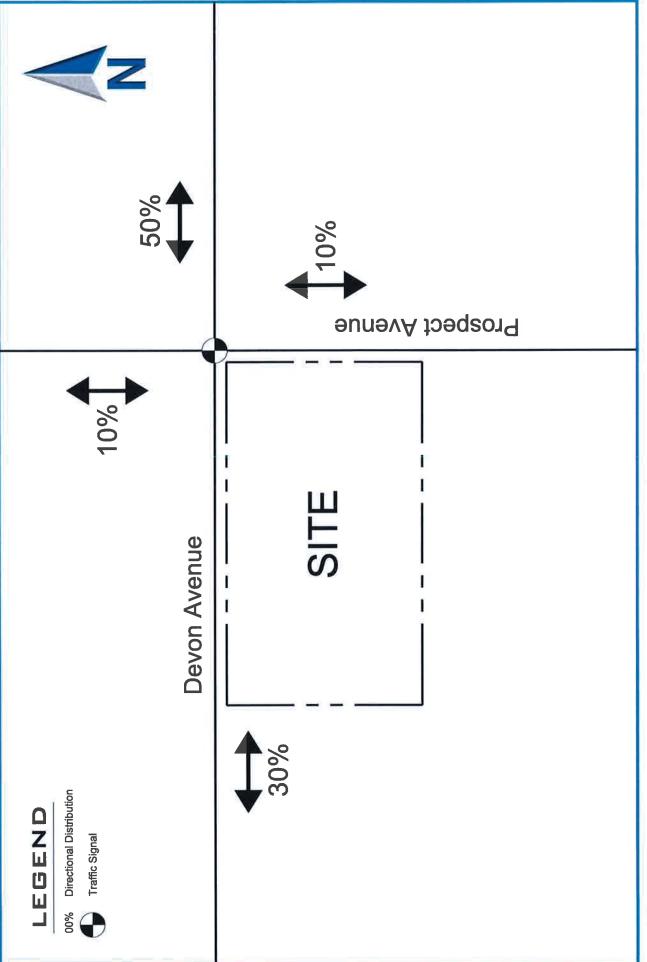
ê **(**


Traffic Signal

Devon Avenue

125 (63) 344 (165) 85 (60)

(02) 09 (14) 69 (29) 16



Prospect Avenue

(26) 65 (141) 233 (34) 64 (34)

Existing Traffic Volumes

Directional Distribution

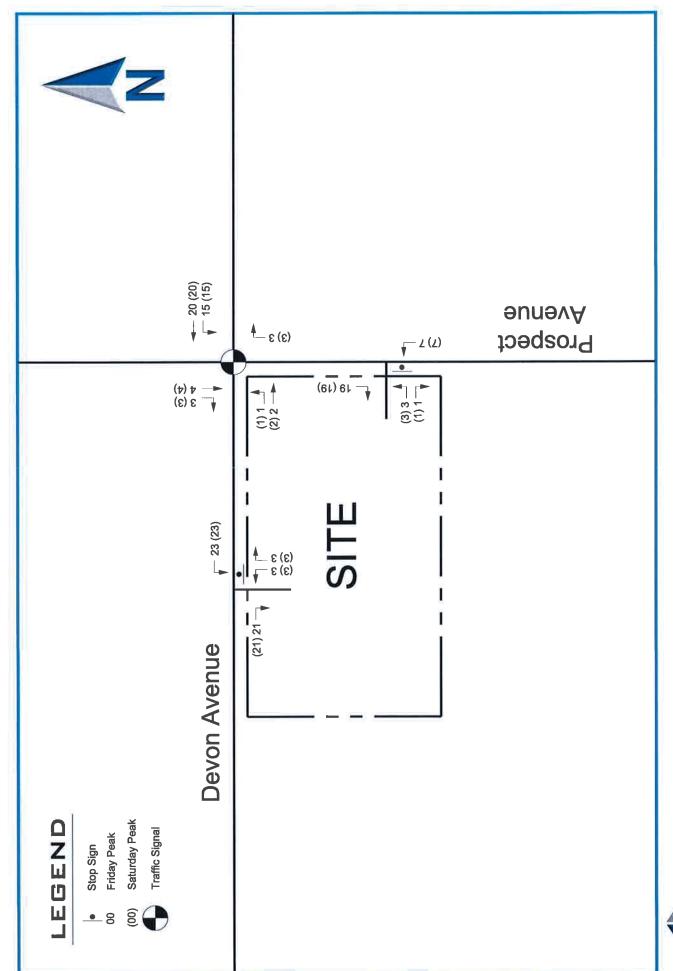
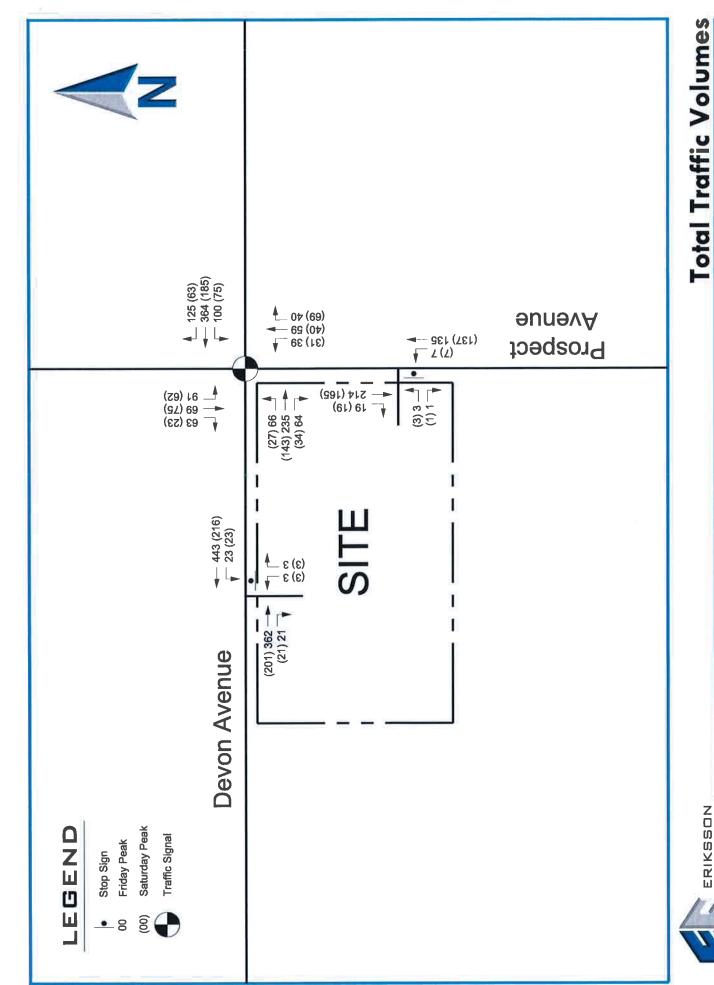



Figure 4

Traffic and Parking Study Appendix

- 2016 Existing Traffic Counts
- Existing Capacity Analyses
- Total Capacity Analyses

Devon Avenue at Prospect Avenue

\neg		_									-								-	-				_	_		_	_	_	_	_	_			
		Peak	Hog	Factor		0.85	0.89	0.92	0.97	0.97	96.0	0.89	0.85	0.89								0.94	0.92	0.91	0.93	0.93	0.95	0.96	0.91	0.87					
		9	Minute	Totals		1072	1120	1194	1254	1267	1254	1165	1115	1022								1111	749	741	754	753	269	779	734	675					
		5	Minute	Totals		251	250	257	314	299	324	317	327	286	235	267	234		1267			206	180	188	203	178	172	201	202	194	182	156	143		779
			Left	Turn		10	0	13	=	-61	17	16	13	œ	9	®	7	138	65				®	٥	=	5	٥	5	٥	Ŋ	_	S	3	83	76
	Devon Avenue	Eastbound		Through		48	32	51	45	75	49	63	46	38	38	53	43	581	233			48	4	31	38	36	37	38	တ္ထ	35	38	29	24	424	141
	De		Right	Turn		10	14	œ	20	18	17	14	15	17	12	13	7	165	2			7	4	4	σο	Ŋ	٥	œ	٥	12	5	9	7	84	8
	Je		Left	Turn		13	٥	٥	91	_	2	14	œ	15	Ξ	7	œ	127	39			ဗ		9	Ŋ	œ	9	œ	=	9	9	9	9	78	.e
ois	Prospect Avenue	Northbound		Through		П	13	22	13	17	14	17	Ξ	12	16	17	6	172	29			15	14	20	23	10	œ	Ξ	12	œ	٥	13	14	157	9
Bartlett, Illinois	Pro	2	Right	Turn		6	œ	٥	6	7	5	1	7	0	œ	œ	٥	107	37			20	œ	13	18	٥	12	16	20	20	0	12	9	164	99
	9		Left	Turn		17	22	17	52	12	76	16	31	21	71	20	80	246	85			10	01	4	91	17	6	15	8	12	15	13	12	161	9
	Devon Avenue	Westbound		Through		73	14	9	88	72	84	84	104	80	6 1	4	74	921	344			44	44	4	56	4	43	49	44	32	4	33	36	475	165
	å		Right	Turn		27	19	92	37	26	38	33	28	32	27	30	25	340	125			22	16	15	12	15	^	18	23	œ	14	14	16	189	63
	40		Left	Turn		15	15	15	30	21	31	18	21	23	16	17	12	234	6			15	0	18	01	92	4	17	12	22	Ξ	15	8	170	62
	Prospect Avenue	Southbound		Through	2016	01	17	15	Ξ	01	17	18	20	18	13	19	13	181	65		9, 2016	11	12	Ξ	Ξ	7	7	13	0	27	12	4	7	141	F
	Pros	š	Right	Turn	Friday April 8,	ω	4	20	٥	15	16	13	16	12	9		٥	149	9		Saturday April 9, 2016	4	_	•	13	œ	11	ო	4	7	9	9	4	29	70
			Begin	Time	F	4:00 PM	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM	6:45 PM	Total	5:00-6:00 PM		8	4:00 PM	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM	6:45 PM	Total	5:30-6:30 PM

		НС	S 201	0 Sig	naliz	ed Int	ersec	tio	n In	put l	Data					
STORIES IT															Standard Control	
General Informa	ation								Inte	ersect	ion Info	ormatic	n	1	4441	h
Agency		Eriksson Engineerin	ıg						Dur	ation,	h	0.25			44	
Analyst		SBC		Analys	is Date	4/7/20	16		Area	а Тур	е	Other	4	4		2 2
Jurisdiction		DuPage/Bartlett		Time P			Existin	g	PHF			0.97		4 4		÷
Urban Street		Devon Avenue		Analys	is Yea				Ana	alysis	Period	1> 17	:00		5.6	
Intersection		Prospect Avenue		File Na	File Name Friday Existing.xus										4 1 4 7	h (
Project Descripti	on	Friday Existing Volu	mes													
151 70 ft St 52 W	E-E		WE W	a de la companya della companya della companya de la companya della companya dell	(SŽ _V I)	200 000	THE TAX	371	THE S	di di	District.	apileu) fi	7 6 6	F 18		Yu Tali
Demand Inform	ation			EB			٧	VB			NB			SB		
Approach Mover	nent			L	T	R	L		Т	R	L	T	R	L	T	R
Demand (v), ve	h/h			65	233	64	85	3	44	125	39	59	37	91	65	60
		L. S. Line I.											187			Tribay
Signal Informat	ion					10		2	Ų.					_		1
Cycle, s	100.0	Reference Phase	2		~ "	<u>و</u> ا		5"	SIZ	1		¥		0		ctx.
Offset, s	0	Reference Point	End	Green	5.1	0.4	64.5	11	<u>∄III</u> 5.0	0.0	0.0	_	1	W .	3	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.0	4.		0.0	0.0		7		- 3	KD.
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	2.0	2.		0.0	0.0		6	6	7	
	K H		7.50 T													
Traffic Informat	ion				EB			W	В			NB			SB	
Approach Mover	nent			L	Т	R	L	Т		R	L	Т	R	L	T	R
Demand (v), veh				65	233	64	85	34	4	125	39	59	37	91	65	60
Initial Queue (Qu		h		0	0	0	0	0	_	0	0	0	0	0	0	0
Base Saturation	-			1900	1900	1900	1900	190	00 1	900	1900	1900	1900	1900	1900	1900
Parking (N _m), ma		(),			None			Nor				None			None	
Heavy Vehicles		V ₀		3	3		3	3			3	3		3	3	
Ped / Bike / RTC				0	0	0	0	0		0	0	0	0	0	0	0
Buses (N _b), buse				0	0	0	0	0		0	0	0	0	0	0	0
Arrival Type (AT)				3	3	3	3	3		3	3	3	3	3	3	3
Upstream Filterin				1.00	1.00	1.00	1.00	1.0		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W),				12.0	12.0	1.00	12.0	12.		1.00	12.0	12.0	1.00	12.0	12.0	1.00
Turn Bay Length				135	0		135	0			100	0		125	0	
Grade (Pg), %	, 11			100	3	1	100	0			100	0		120	0	_
Speed Limit, mi/	h			35	35	35	35	35		35	30	30	30	25	25	25
Speed Limit, His	range.	1 - 2 W Co / 1 - 1 - 1		33	33		33		w de		00		- 00		Teal NV	N. POZI
Phase Informat	ion			EBL		EBT	WBI		WE	3Т	NBL		NBT	SBL		SBT
Maximum Green	(Gmax	or Phase Split, s		20.0		45.0	20.0		45	.0			35.0			35.0
Yellow Change I				3.0		4.0	3.0		4.	0			4.0			4.0
Red Clearance I				0.0		2.0	0.0		2.	.0			2.0			2.0
Minimum Green		30 31		6		6	6		6	3	6		15	6		15
Start-Up Lost Tir				2.0		2.0	2.0		2.		2.0		2.0	2.0		2.0
Extension of Effe				2.0		2.0	2.0		2.		2.0		2.0	2.0		2.0
Passage (PT), s		3.71		2.0		2.0	2.0		2.		2.0		2.0	2.0		2.0
Recall Mode							Off		Mi		Off		Off	Off		Off
	Dual Entry						No		Ye		No		Yes	No		Yes
Walk (Walk), s				No 0.0	_	Yes 0.0	0.0		0.		0.0	_	0.0	0.0		0.0
Pedestrian Clea	rance 7	Time (PC), s		0.0		0.0	0.0		0.		0.0		0.0	0.0		0.0
NAME OF THE OWNER OWNER OF THE OWNER OW				The same	11/20	108 N TY	BIEVE D		N'au	2 W	SERV	1	150			N. CVIII
Multimodal Info	rmatic	on			EB			W	В			NB			SB	
	85th % Speed / Rest in Walk / Corner Radius					25	0	No	0	25	0	No	25	0	No	25
	Walkway / Crosswalk Width / Length, ft				12	0	9.0	12	2	0	9.0	12	0	9.0	12	0
Street Width / Is				9.0	0	No	0	0		No	0	0	No	0	0	No
	Width Outside / Bike Lane / Shoulder, ft					2.0	12	5.	0	2.0	12	5.0	2.0	12	5.0	2.0
	Pedestrian Signal / Occupied Parking					0.50	No		0.5	50	No		0.50	No		0.50

		HCS 2	010 S	ignali	zed l	nters	ection	Re	sults S	Summ	агу					
						THE RESERVE	the street	BEN.	District Control		3)71	46,7	125		3 1	
General Inform	nation								Intersec		10	n		4741		
Agency		Eriksson Engineerir	ng					_	Duration		0.25				-	
Analyst		SBC				4/7/20			Area Ty	oe	Other	1			**	
Jurisdiction		DuPage/Bartlett		Time F	Period	Friday Peak	Existin	g	PHF		0.97		* T		-	
Urban Street		Devon Avenue		Analys	is Yea	2016			Analysis	Period	1> 17	:00		15 %		
Intersection		Prospect Avenue		File Na	ame	Friday	Existin	g.xus						ৰাক্স		
Project Descrip	tion	Friday Existing Volu	ımes													
Demand Inform	nation		(518)(8)		EB		1	W	B			SB				
Approach Move	ement			L	T	R	L	T	R	L	T	R	L	T	R	
Demand (v), v				65	233	64	85	34	4 125	39	59	37	91	65	60	
							A CONT				1 C			No. of Lines		
Signal Informa					28	- 6	- n	빏셊	Å.			_		Jan Ja	\mathbf{A}	
Cycle, s	100.0	Reference Phase	2		2	2	3	•	\n_				♦ 2	3		
Offset, s	0	Reference Point	End	Green		0.4	64.5	15	.0 0.0	0.0			A			
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-0	0.0	4.0	4.0		0.0			2	7	Ŷ	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	2.0	2.0	0.0	0.0		Siensi	EXCHANGE OF			
Timer Results	0. 1		- 175	EBI		EBT	WB		WBT	NBI		NBT	SBI		SBT	
Assigned Phase				5		2	1	_	6	IND	_	8	- OD.		4	
Case Number				1.1	\neg	4.0	1.1	十	4.0			6.0			6.0	
Phase Duration). S			8.1		70.5	8.5	_	70.9			21.0			21.0	
Change Period	-	c), S		3.0		6.0	3.0	_	6.0			6.0			6.0	
Max Allow Hea				3.1		0.0	3.1		0.0			3.3			3.3	
Queue Clearan				3.2			3.6					12.0		3 5	14.3	
Green Extension				0.1		0.0	0.1		0.0			0.7			0.7	
Phase Call Pro	bability			0.84			0.91	1				1.00			1.00	
Max Out Proba	bility			0.00)		0.00					0.00			0.00	
Movement Gro	un Poe	ulte		ST ST	EB			WE			NB	101		SB	1 10	
Approach Move		Julia		L	T	R		T	R		T	R		T	R	
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14	
Adjusted Flow) veh/h		67	156	150	88	250		40	99		94	129		
		ow Rate (s), veh/h/l	ln	1730	1817	1684	1757	184		1244	1725		1278	1698		
Queue Service				1.2	3.3	3.5	1.6	5.5	5.7	3.1	5.2		7.1	7.0		
Cycle Queue C	learanc	e Time (<i>g c</i>), s		1.2	3.3	3.5	1.6	5.5	5.7	10.0	5.2		12.3	7.0		
Green Ratio (g	/C)			0.70	0.65	0.65	0.70	0.68	0.65	0.15	0.15		0.15	0.15		
Capacity (c), v	/eh/h			667	1172	1086	814	119		172	259		198	255		
Volume-to-Cap				0.100	0.133	-t	0.108	0.20	-	-	0.382		0.475	0.506		
		In (95 th percentile)		17.2	56.5	54.7	22.2	94.6		43.9	101.3		106	136.3		
<u> </u>		eh/ln (95 th percent		0.7	2.2	2.1	0.9	3.7		1.7	4.0 0.00		4.1 0.85	5.3 0.00		
		RQ) (95 th percent	uie)	0.13 5.1	0.00 6.9	6.9	0.16 4.8	7.1		0.44 43.7	38.3		43.9	39.1		
Uniform Delay Incremental De				0.0	0.9	0.9	0.0	0.4		0.3	0.3		0.7	0.6		
Initial Queue D	-			0.0	0.2	0.0	0.0	0.0		0.0	0.0		0.0	0.0		
Control Delay (5.1	7.1	7.2	4.8	7.5		44.0	38.7		44.5	39.7		
Level of Service				A	A	A	A	A	A	D	D		D	D		
	Approach Delay, s/veh / LOS					A	7.1		A	40.2	L	D	41.		D	
Property of the last of the la	Intersection Delay, s/veh / LOS					6.8 A 7.1						70.2				
		MA ELE			SALE.	BEN S		THE CAN			Mary Park					
Multimodal Re			EB		2.2	WE	3 B		NB			SB				
	Pedestrian LOS Score / LOS					2.2 B 0.8 A				2.9 C			2.9 0.9		C A	
Bicycle LUS So	Bicycle LOS Score / LOS					Α	1.0		Α	0.7		Α	0.9		^	

OF ACTIVITIES AND ACT	Re Velle	HCS 20	10 5	Sign	alize	d Int	ersect	ion	Int	erme	ediate	Valu	ues	7.000	Tullsia	01 ST 1	I PS SIW
		en Navisanesta		See	Skill of			16			3700			INCOME.	night lett	14441	Mark Sta
General Inform	nation										rsectio		_		- 1	41	Ì
Agency		Eriksson Engineerin	g								ation, h		0.25				-
Analyst		SBC		_	nalysis		4/7/2016				а Туре		Othe				÷.
Jurisdiction		DuPage/Bartlett			ime Pe		Friday E Peak	xistin	ng 	PHF			0.97		74.4		<u> </u>
Urban Street		Devon Avenue		Α	nalysis	Year	2016				lysis Pe	eriod	1> 1	7:00		5 %	
Intersection		Prospect Avenue		F	ile Nan	ne	Friday Existing.xus			IS						ነቀነቀዣ	1- 0
Project Descrip	tion	Friday Existing Volu	mes														
Demand Inform	nation				TRAINES	EB	T 13 1310	2534		WB	A Property	63	NE	3	The Party	SB	41175
Approach Move					LI	T	R	L	\top	TI	R	L	ΙT		L	IT	R
	Demand (v), veh/h					233	64	85	13	344	125	39	59		91	65	60
	Demand (V), Venin					A)III)E IV	30.1	2 Vi	TWO I			434	DE SA			Black and	SIG STUR
Signal Informa	tion					240	5_		٧,	Ji.							1
Cycle, s	100.0	Reference Phase	2		ŀ	71 6	2		3	ሚሰም				-	4		STA
Offset, s	fset, s 0 Reference Point E				reen	5.1	0.4	64.5	1	5.0	0.0	0.0	-		M 2	3	-
Uncoordinated					ellow		0.0	4.0		1.0	0.0	0.0		1	→		KD.
Force Mode	Fixed	Simult. Gap N/S	Or			0.0		2.0		2.0	0.0	0.0		5	6	7	Y
					EB			V	VB			١	IB			SB	
Saturation Flo	w / Dela	ay		L	Т	R	L	I T		R	L		T	R	L	T	R
Lane Width Adj	ustment	Factor (fw)	_ 1	.000	1.000	1.000	1.000	1.0	000	1.000	1.00	0 1.0	000	1.000	1.000	1.000	1.000
Heavy Vehicle	Adjustm	ent Factor (f⊬v)	0	.971	0.971	0.97	0.971	0.9	71	0.971	0.97	1 0.9	971	0.971	0.971	0.971	0.971
Approach Grad	e Adjust	tment Factor (fg)	0	.985	0.985	0.98	1.000	1.0	000	1.000	1.00	0 1.0	000	1.000	1.000	1.000	1.000
Parking Activity	Adjustn	nent Factor (f ₀)	1	.000	1.000	1.000	1.000	1.0	000	1.000	1.00	0 1.0	000	1.000	1.000	1.000	1.000
Bus Blockage A	djustme	ent Factor (fbb)	1	.000	1.000	1.000	1.000	1.0	000	1.000	1.00	0 1.	000	1.000	1.000	1.000	1.000
Area Type Adju	stment	Factor (f _a)	1	.000	1.000	1.000	1.000	1.0	000	1.000	1.00	0 1.	000	1.000	1.000	1.000	1.000
Lane Utilization	Adjustr	ment Factor (f∟∪)	1	.000	1.000	1.000	1.000	1.0	000	1.000	1.00	0 1.0	000	1.000	1.000	1.000	1.000
Left-Turn Adjus	tment F	actor (flt)	0	.952	0.000		0.952	0.0	000			0.0	000			0.000	
Right-Turn Adju	stment	Factor (fr)			0.927			0.9	09			0.9	935			0.920	
Left-Turn Pedes	strian A	djustment Factor (fம	b) 1	.000			1.000				1.00	0			1.000		
Right-Turn Ped	-Bike Ad	djustment Factor (<i>f</i> _{Re}	b)			1.000				1.000				1.000			1.000
Movement Satu	ration F	low Rate (s), veh/h		1730	2760		1757	25					060			883	
Proportion of Vo	ehicles /	Arriving on Green (P		0.05	0.65	0.65	0.05	0.6	65	0.65			.15	0.15	0.15	0.15	0.15
Incremental De	lay Fact	tor (k)		0.04	0.50	0.50	0.04	0.8	50	0.50	0.0	4 0.	.04	90.0	0.04	0.04	100
Signal Timing	/ Move	ment Groups		EB	L	EBT/R	WE	3L	W	/BT/R	N	IBL	N	IBT/R	SBI	_	SBT/R
Lost Time (t _L)				3.0		6.0	3.0	0		6.0				6.0			6.0
Green Ratio (g/	(C)			0.70	0	0.65	0.7	0		0.65				0.15			0.15
		low Rate (s₀), veh/h/	n	886		0	108			0			1	1244			1278
Shared Saturat	ion Flov	v Rate (ssh), veh/h/ln															
Permitted Effect				64.	5	0.0	64	.5		0.0				15.0			15.0
Permitted Servi				57.3	3	0.0	61	.0		0.0				8.0			9.8
		ce Time (gos), s		0.6			0.3	3						3.1			7.1
Time to First Bl	Time to First Blockage (<i>gi</i>), s					0.0	0.	0		0.0			T	0.0			0.0
	Queue Service Time Before Blockage (g/s), s																
		tion Flow (sR), veh/h															
		ve Green Time (gR),															
Multimodal					EB			V	VB			1	VΒ		Y THE	SB	
				1.55	7	0.00	1.5			0.00	2.	107		0.00	2.10	7	0.00
				0.00		0.074	0.0	_		0.073		000).144	0.00		0.144
Pedestrian Mcomer / Mcw									0.073		0.000						
Bicycle Cb / db					.52	6.29	1298	.65	65 6.		30	0.00	3	36.13	300.0	00	36.13
Bicycle Fw / Fv				-3.6		0.31	-3.6	_	-	0.47	_	.64		0.23	-3.64		0.37

	M	essages	
--	---	---------	--

No errors or warnings exist.

--- Comments ---

Copyright © 2016 University of Florida, All Rights Reserved.

HCS 2010™ Streets Version 6.80

		НС	S 201	0 Sig	naliz	ed Int	ersec	tior	Inpu	ut C	Data						
		725 725			Lypide.		13			U.	1 158	8 E		NEED!			
General Inform	nation										on Info		ا الحادث الدينة الحادث				
Agency		Eriksson Engineerir	ng							on,	h	0.25					
Analyst		SBC		Analys	is Date	4/7/20			Area 7	Гуре		Other		<u> </u>			
Jurisdiction		DuPage/Bartlett		Time F	Period	Friday	Total P	eak	PHF			0.97		4 =		÷	
Urban Street		Devon Avenue		Analys	is Year	2016			Analy	sis F	Period	1> 17	:00	7		7	
Intersection		Prospect Avenue		File Na	ame	Friday	Total.x	us							1 1		
Project Descrip	tion	FridayTotal Volume	S		CO LOCAL	WIT 14 TH	1778		8 -8 -					7	1 1 ቀ ፕ	+ (*	
Demand Inform	nation	Parl Carrier Styl	LOW .		EB			V	/B			NB	4 (00.110)		SB	(O) Title	
Approach Move	ement			L	Т	R	L	1 7		R	L	T	R	L	Т	R	
Demand (v), v				66	235	64	100	36	34 1	25	39	59	40	91	69	63	
		The State No Print	524X U V	Tell late			ROEL		V. 18	U.		A THE	dSi WA			Mar and	
Signal Informa	tion				200	5			. L								
Cycle, s	100.0	Reference Phase	2		~ "	- 5		9	517			K		0.		S.T.Z.	
Offset, s	0	Reference Point	End	Green	5.1	0.6	64.1	15		.0	0.0		1	N 2	3	4	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.0	4.0		.0	0.0		7	→		STA	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	2.0	2.0		.0	0.0		6	- 6	7		
	We have	#163 c X Y 5	7,74.8	EWY		35.7			up) (No. of Parties		THE REAL PROPERTY.			
Traffic Informa	tion				EB			WE	3			NB			SB		
Approach Move				L	T	R	L	T	R		L	Т	R	L	Т	R	
Demand (v), ve				66	235	64	100	364	12	5	39	59	40	91	69	63	
Initial Queue (C		'h		0	0	0	0	0	0	_	0	0	0	0	0	0	
Base Saturation				1900	1900	1900	1900	190	_	-0	1900	1900	1900	1900	1900	1900	
Parking (Nm), m		tate (60), versit		1000	None	-		Non				None			None		
Heavy Vehicles	_	0/.		3	3	-	3	3	_	-	3	3		3	3		
Ped / Bike / RT	A	70		0	0	0	0	0	0		0	0	0	0	0	0	
				0	0	0	0	0	0	-0	0	0	0	0	0	0	
Buses (N _b), bus				3	3	3	3	3	3	-0	3	3	3	3	3	3	
Arrival Type (A				1.00	1.00	1.00	1.00	1.0		—	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter	THE REAL PROPERTY.			12.0	12.0	1.00	12.0	12.			12.0	12.0	1.00	12.0	12.0	1.00	
Lane Width (W			-	135	0	-	135	0		-	100	0		125	0	-	
Turn Bay Lengt	m, π			135	3	-	135	0	+	-	100	0		125	0		
Grade (Pg), %	: /-			35	35	35	35	35	38		30	30	30	25	25	25	
Speed Limit, m	I/N	AS UL SE MINE UP	Will be to	35	35	35	35	35	3:		30	30	30	2.5		7.5	
Phase Informa	tion			EBL		EBT	WBI		WBT	0	NBL		NBT	SBL	_	SBT	
) or Phase Split, s		20.0		45.0	3.0		45.0				35.0			35.0	
Yellow Change	Interva	I (Y), s		3.0		4.0			4.0			4.0				4.0	
Red Clearance	Interva	I (<i>R₀</i>), s		0.0		2.0	0.0		2.0			2.0				2.0	
Minimum Gree	n (Gmin)), S		6		6	6		6		6		15	6		15	
Start-Up Lost T	ime (<i>It</i>)	, S		2.0		2.0	2.0		2.0		2.0	2.0		2.0		2.0	
Extension of Et	fective	Green (e), s		2.0		2.0	2.0		2.0		2.0	2.0		2.0		2.0	
Passage (PT), s			2.0		2.0	2.0		2.0		2.0		2.0			2.0		
Recall Mode			Off		Min	Off		Min		Off		Off			Off		
Dual Entry			No		Yes	No		Yes		No		Yes	No		Yes		
Walk (Walk), s			0.0		0.0	0.0		0.0		0.0		0.0	0.0		0.0		
Pedestrian Clearance Time (PC), s			0.0		0.0	0.0		0.0		0.0		0.0	0.0		0.0		
Multipadal Information				EB	Windle.		WE			100	NB	A CHAINE		SB	2 (12/2)		
Multimodal Information 85th % Speed / Rest in Walk / Corner Radius			0	No	25	0	No	- HUT	5	0	No	25	0	No	25		
		Width / Length, ft	uo	9.0	12	0	9.0	12			9.0	12	0	9.0	12	0	
Street Width / I				0	0	No	0	0	N	-	0	0	No	0	0	No	
		ane / Shoulder, ft	_	12	5.0	2.0	12	5.0			12	5.0	2.0	12	5.0	2.0	
				No		0.50	No		0.50		No		0.50	No		0.50	
Pedestrian Signal / Occupied Parking						5,50	140		3.00								

preference interest faceur	HCS 2	010 S	ignali	zed	Interse	ection	Res	ults S	umma	ary	133.79	I WES	20	T 155		
General Information		Chroning I	Service Con		7871	11/15/11/25	150000	ntersect	tion Inf	ormatic		A PARTIES	4 444	b le_		
	ksson Engineerir	20						Duration,		0.25	711		41			
		19	Analysis Date 4/7/2016					Area Typ		Other		- 1		À		
Analyst SBC Jurisdiction DuPage/Bartlett				eriod		Total P		PHF		0.97		- ; ∴				
			Analys		-	TOTAL		Analysis	Poriod	1> 17	.00	- 1		~ ;		
	von Avenue		File Na			Total.x	-	Arialysis	renou	11-17	.00					
	spect Avenue		File Na	ame	Friday	iotai.x	us				-		a tarr	P (
Project Description Frid	dayTotal Volume	S	IN A SECTION	emme	SV 5 11	N/8	1.70	8 - 8		T 17'-11	CONTRACT OF					
Demand Information	No. 100 Inches			EB	Detro	The state of the s	WE		The state of	NB		a manage	SB	100		
Approach Movement			L	T	R		T	R		T	R		T	R		
			66	235	_	100	-		39	59	40	91	69	63		
Demand (v), veh/h		8 115/0	00	230	04	100	304	123	39	39	40	31	09	00		
Signal Information	- Walter 1997	المعالات ا		<u> </u>	7 8						4-14					
	eference Phase	2	N .	_31	- 5		22	20740				4		4		
	eference Point	End				-		17			1	Y 2	3	4		
	mult. Gap E/W	On	Green		0.6	64.1	15.2		0.0	- 111		A	-			
	mult. Gap N/S	On	Yellow Red	0.0	0.0	4.0 2.0	2.0	0.0	0.0				7	Y		
Force Mode Fixed Sir	muit. Gap N/S	On	Reu	10.0	0.0	2.0	12.0	10.0	10.0	والمرافعات		DE IN	DATE:	District		
Timer Results	TOURS - IN THE STATE OF	80 118 11.	EBL		EBT	WB		WBT	NBL	211 1 3	NBT	SBI		SBT		
Assigned Phase			5	İ	2	1		6			8			4		
Case Number					4.0	1.1		4.0			6.0			6.0		
Phase Duration, s			\$		70.1	8.7		70.7			21.2		21.2			
Change Period, (Y+Rc), s	S		4		6.0	3.0		6.0		6.0				6.0		
Max Allow Headway (MAH			0		0.0			0.0			3.4		3.			
Queue Clearance Time (g			3.3			3.9				12.5				14.5		
Green Extension Time (g					0.0	0.2		0.0		0.7				0.7		
Phase Call Probability	0), 0		0.85			0.94					1.00			1.00		
Max Out Probability			0.00			0.00			0.00					0.00		
THUX OUT TODADING	Miles View	n of tu		(SEE	EXE.				188 AW			A THE RESIDENCE				
Movement Group Results	8			EB			WB			NB			SB			
Approach Movement			L	Т	R	L	T	R	L	T	R	L	Т	R		
Assigned Movement			5	2	12	1	6	16	3	8	18	7	4	14		
Adjusted Flow Rate (v), v	eh/h		68	157	151	103	261	243	40	102		94	136			
Adjusted Saturation Flow F	Rate (s), veh/h/	ln	1730	1817	1684	1757	1845	1684	1236	1720		1275	1699			
Queue Service Time (g s)			1.3	3.4	3.5	1.9	5.8	6.0	3.1	5.3		7.2	7.4			
Cycle Queue Clearance Ti			1.3	3.4	3.5	1.9	5.8	6.0	10.5	5.3		12.5	7.4			
Green Ratio (g/C)	10),		0.69	0.64	0.64	0.70	0.65	0.65	0.15	0.15		0.15	0.15			
Capacity (c), veh/h			653	1165	1080	812	1193	1089	169	262		198	259			
Volume-to-Capacity Ratio	(X)		0.104	0.135	-	0.127	0.219		0.238	0.389		0.474	0.526			
Back of Queue (Q), ft/ln (iki mirani maran m)	17.8	58	56.1	26.7	100.3	-0	44.1	104.4		106.1	144.4			
Back of Queue (Q), veh/ln (95 th percentile)				2.3	2.2	1.0	3.9	3.7	1.7	4.1		4.1	5.6	1		
Queue Storage Ratio (RQ) (95 th percentile)			0.7	0.00		0.20	0.00	0.00	0.44	0.00		0.85	0.00			
Uniform Delay (d 1), s/veh			5.2	7.1	7.1	4.9	7.3	7.3	43.9	38.2		43.9	39.0			
Incremental Delay (d 2), s/veh			0.0	0.2	0.3	0.0	0.4	0.5	0.3	0.4	i	0.7	0.6			
Initial Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0			
Control Delay (d), s/veh				7.3	7.3	5.0	7.7	7.8	44.2	38.5		44.5	39.7			
Level of Service (LOS)				7.0 A	A	A	A	A	D	D		D	D			
Approach Delay, s/veh / LOS					A	7.3		A	40.1	_	D	41.6		D		
			6.9			3.5			70.			В				
												B A A CONTRACT OF STATE OF STA				
Intersection Delay, s/veh /		Av. All	51-001	tine	UNITED IN	UNIVERSE	and the	ting and	(III ALT				200	W WIE		
Intersection Delay, s/veh /		% A)		FR	ALL		WB	Mily San		NB	112		SB			
	LOS		2.2	EB	В	2.2	WB	В	2.9		С	2.9		C		

HCS 2010 Signalized Intersection Intermediate Values 141411 Intersection Information **General Information** 0.25 Duration, h Agency Eriksson Engineering Other Analysis Date 4/7/2016 Area Type SBC Analyst Friday Total Peak PHF 0.97 Jurisdiction DuPage/Bartlett Time Period **Analysis** Period 1> 17:00 Analysis Year 2016 **Urban Street** Devon Avenue Prospect Avenue File Name Friday Total.xus Intersection 1414716 **Project Description** FridayTotal Volumes SB EΒ WR NB **Demand Information** R L Т R R R T Approach Movement L 40 91 69 63 66 235 64 100 364 125 39 59 Demand (v), veh/h Signal Information 2 100.0 Reference Phase Cycle, s Offset, s 0 Reference Point End 0.0 0.0 Green 5.1 0.6 64.1 15.2 No Simult. Gap E/W On Uncoordinated 0.0 0.0 Yellow 3.0 0.0 4.0 4.0 2.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 2.0 SB WB NB EB R Т R R L L Saturation Flow / Delay L R L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Width Adjustment Factor (fw) 1.000 1.000 1.000 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 Heavy Vehicle Adjustment Factor (fHV) 1.000 1.000 1.000 1.000 0.985 0.985 0.985 1.000 1.000 1.000 1.000 1.000 Approach Grade Adjustment Factor (fg) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Parking Activity Adjustment Factor (f₀) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1,000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 0.000 0.000 0.952 0.000 0.952 0.000 Left-Turn Adjustment Factor (fLT) 0.921 0.913 0.932 0.927 Right-Turn Adjustment Factor (fRT) 1.000 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLob) 1.000 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (fRob) 1757 2636 1025 888 Movement Saturation Flow Rate (s), veh/h 1730 2765 0.15 0.15 0.15 0.15 0.65 0.15 0.15 0.64 0.06 0.65 Proportion of Vehicles Arriving on Green (P) 0.05 0.64 0.04 0.04 0.04 0.04 0.50 0.50 0.04 0.50 0.50 0.04 Incremental Delay Factor (k) SBT/R EBT/R WBL WBT/R NBL NBT/R SBL **EBL** Signal Timing / Movement Groups 6.0 3.0 6.0 3.0 6.0 6.0 Lost Time (t_L) 0.15 0.69 0.64 0.70 0.65 0.15 Green Ratio (g/C) 1056 1236 1275 0 Permitted Saturation Flow Rate (so), veh/h/ln 869 0 Shared Saturation Flow Rate (Ssh), veh/h/ln 15.2 15.2 64.1 0.0 64.1 0.0 Permitted Effective Green Time (g₀), s 7.8 9.9 56.7 0.0 60.6 0.0 Permitted Service Time (gu), s 7.2 0.6 0.4 3.1 Permitted Queue Service Time (gos), s 0.0 0.0 0.0 0.0 0.0 0.0 Time to First Blockage (gi), s Queue Service Time Before Blockage (grs), s Protected Right Saturation Flow (sR), veh/h/ln Protected Right Effective Green Time (gR), s WB NB SB FB Multimodal 0.00 0.00 2.107 Pedestrian Fw / Fv 1.557 0.00 1.557 0.00 2.107 0.000 0.144 0.000 0.075 0.000 0.073 0.000 0.144 Pedestrian Fs / Fdelay Pedestrian Mcomer / Mcw 304.88 35.92 6.44 1293.24 6.24 304.88 35.92 1281.96 Bicycle cb / db -3.64 0.31 -3.64 0.50 -3.64 0.23 -3.64 0.38 Bicycle Fw / Fv

		НС	S 201	0 SIg	nali	zed Int	tersec	tior	ı Inpu	t Da	ata						
All months	XI PI								(1)	Bin.							
General Information									Interse	ectio	n Info		4 74 4 1				
Agency		Eriksson Engineerin	ig.							n, h		0.25		J			
Analyst		SBC		Analysis Date Apr 12, 2016					Area T	уре		Other				A >	
Jurisdiction		DuPage/Bartlett		Time F	Period	Satur Peak	day Exis	day Existing PHF				0.96		\$. .= :	
Urban Street		Devon Avenue		Analys	is Yea	ar 2016			Analys	is Pe	riod	1> 17	:30		56		
Intersection		Prospect Avenue		File Na	ame	Friday	/ Existin	g.xus	3					7	4147	. (
Project Descrip	tion	Saturday Existing V	olumes														
	787						reit in	1			. 201	AUD	C LIVE		CD		
Demand Inform				-	EB		+		VB	\rightarrow		NB	T B		SB	LB	
Approach Move				L	T	R	L	_	T F		04	T	R	L	T 74	R	
Demand (v), v	eh/h	DE 3 1 10 TO 10 10 10 10 10 10 10 10 10 10 10 10 10		26	141	34	60	THE REAL PROPERTY.	65 6	3	31	40	66	62	71	20	
Signal Informa	ation		15,000			8		ا. ل			1000				100		
Cycle, s	100.0	Reference Phase	2		_21	- 1		Fig. 18				w/	<u> </u>	4		A	
Offset, s	0	Reference Point	End		_		05.4			_			1	2	3	4	
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		1.8	65.1 4.0	4.	5.0 0 .		0.0			>		EŤ2	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	2.0	2.			0.0		5	6	7	a	
Toros mode	Hall		i alle	N. G. P.	gan.		Alluga					2 27	018 1118	1000		is the	
Traffic Informa	tion		The same		EB			W	В	T	4 (1)	NB			SB		
Approach Move				L	Т	R	L	Т	R		L	Т	R	L	Т	R	
Demand (v), ve				26	141	34	60	16	5 63		31	40	66	62	71	20	
Initial Queue (0		'h		0	0	0	0	0	0		0	0	0	0	0	0	
Base Saturation				1900	1900	1900	1900	190	0 190	0 1	900	1900	1900	1900	1900	1900	
Parking (N _m), n		77			None	е	i i	Nor	ne			None			None		
Heavy Vehicles		%		3	3		3	3			3	3		3	3		
Ped / Bike / RT				0	0	0	0	0	0		0	0	0	0	0	0	
Buses (N _b), bus				0	0	0	0	0	0		0	0	0	0	0	0	
Arrival Type (A				3	3	3	3	3	3		3	3	3	3	3	3	
Upstream Filter	ring (/)			1.00	1.00	1.00	1.00	1.0	0 1.0	0 1	1.00	1.00	1.00	1.00	1.00	1.00	
Lane Width (W), ft			12.0	12.0		12.0	12.	0	1	12.0	12.0		12.0	12.0		
Turn Bay Leng	th, ft			135	0		135	0			100	0		125	0		
Grade (Pg), %					3			0				0			0		
Speed Limit, m	i/h			35	35	35	35	35	35		30	30	30	25	25	25	
	Old at				T. Carl	120 47 11			WBT		MID		in in	SBL		OPT	
Phase Informa				EBL		EBT		WBL		_	NBL		NBT 35.0		_	35.0	
) or Phase Split, s		20.0		45.0	3.0		45.0		_	-	4.0		_	4.0	
Yellow Change Red Clearance				3.0 0.0		2.0	0.0		2.0			2.0			_	2.0	
Minimum Gree	_			6	-	6	6		6		6	_	15		_	15	
Start-Up Lost T				2.0	-	2.0	2.0	_	2.0	_	2.0	_	2.0	6 2.0	_	2.0	
				2.0	_	2.0	2.0	\rightarrow	2.0		2.0		2.0	2.0		2.0	
Extension of Effective Green (e), s			2.0		2.0	-	2.0		-	2.0		2.0	2.0	2.0			
Passage (PT), s Recall Mode			Off		Min		Off			Off		Off	Off		Off		
Dual Entry			No	-	Yes	No		Min Yes		No		Yes	No		Yes		
Walk (Walk), s			0.0	_	0.0	0.0		0.0		0.0		0.0	0.0		0.0		
Pedestrian Clearance Time (<i>PC</i>), s			0.0	_	0.0	0.0		0.0		0.0		0.0	0.0		0.0		
			THE SEAL	i Bent	ROLLE F	TOWNER A	10/1				NOT THE PARTY OF	TO TO					
Multimodal Information				EB			W				NB			SB			
85th % Speed / Rest in Walk / Corner Radius			0	No		0	N			0	No	25	0	No	25		
Walkway / Crosswalk Width / Length, ft			9.0	12	0	9.0	12	_		9.0	12	0	9.0	12	0		
Street Width / Island / Curb			0	0	No	0	0	_	_	0	0	No	0	0	No		
the same of the sa		ane / Shoulder, ft		12	5.0		12	5.			12	5.0	2.0	12	5.0	2.0	
Pedestrian Signal / Occupied Parking				No		0.50	No		0.50		No		0.50	No		0.50	

			HCS 20)10 S	ignali	zed	Interse	ection	Re	sults	Su	mma	агу				
Selection Information												الله جالي			to the		
Agency	General Inform	nation									_		Name and Address of the Owner, where the Owner, which the	n	1		
Urban Street	Agency		Eriksson Engineerin	g			-						-				
Lifean Street	Analyst				0						ype				<u> </u>		<u>~</u>
Prospect Description Prospect Avenue File Name Friday Existing.xus Friday Exis	Jurisdiction		DuPage/Bartlett		Time F	Period		lay Exis	ting	PHF			0.96		4 7		
Project Description Saturday Existing Volumes EB	Urban Street		Devon Avenue		Analys	is Yea	r 2016			Analys	is P	eriod	1> 17	:30]-	1 1	
Demand Information	Intersection					ame	Friday	Existin	g.xus						7	41441	r
Approach Movement	Project Descrip	tion	Saturday Existing V	olumes					450	THE REAL PROPERTY.	-			NIES III			
Approach Movement	Parand Inform	n Kan		F. WA		ED	36.44	S IN THE	1/4		NAME OF		NID	al tools	34,54	SB	- CILH
Demand (v), vehish						*	T D	1					7	I R	1		R
Signal Information					26		_	60			_	31					_
Cycle, s 100.0 Reference Phase 2 Offset, s 0 Reference Phase 2 Offset, s 0 Reference Point End Green 3.2 1.8 65.1 15.0 0.0 0.0 0.0	Demand (V), V	CHIT	A STREET STREET	18 19	20	LIVE S								Mun		T DUT	.) 2/11/2
Cycle, s 100.0 Reference Phase 2 Offset, s 0 Reference Phase 2 Offset, s 0 Reference Point End Green 3.2 1.8 65.1 15.0 0.0 0.0 0.0	Signal Informa	tion					1 5			3		T				TO THE	
Offset, s	Cycle, s	100.0	Reference Phase	2	1	7 1			711				12		4		tz.
Discription No Simult. Gap E/M On Yellow 30 10 40 4.0 0.0 0.0	Offset, s	0	Reference Point	End	Green	3.2	1.8	65.1			0	0.0	10		N 2	3	- 4
Timer Results	Uncoordinated	No	Simult. Gap E/W	On						0.	0	0.0		7	₹		V
Assigned Phase	Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	2.0	2.	0 0.	0	0.0		5	6	7	T o
Assigned Phase				i si ikin	WIDE.	الجرالا		120									Art / Set
Case Number					10	_		·			_	NBL	_		SBI		
Phase Duration, s		е							-		+	_	_			_	
Change Period, (Y+R c), s 3.0 6.0 3.0 6.0 6.0 3.0 6.0 3.3 3.5 3.5 3.5 </td <td></td> <td></td> <td></td> <td></td> <td>(t</td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					(t	_			-		-						
Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0									_		-			-	ļ		
Queue Clearance Time ($g \circ$), s 2.5 3.1								V	\dashv		-		_		-		
Green Extension Time (g ∘), s O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.		ax Allow Headway (<i>MAH</i>), s				_	0.0		-	0.0	+				-		
Phase Call Probability							0.0		-	0.0	+	_	-		-		
Max Out Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0			(g _θ), s				0.0	ō	_	0.0	+		_		1		
Movement Group Results									-		-		-		_		
Approach Movement L T R L T R L T R L T R L T R L T R L T R R L T R R R R R R R R R	Wax Out 1 Toba	onity	tallow drive 150 Tool	Ti li la	- 0.00	mel) int	TAX III		WILLIAM TO STATE OF THE PARTY O	n Ka		2 FILL	Tiell &	Least I	85-11		VALUE OF STREET
Assigned Movement 5 2 12 1 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h Adjusted Flow Rate (v), veh/h Adjusted Saturation Flow Rate (s), veh/h/ln 1730 1817 1697 1757 1845 1674 1283 1659 1265 1774 Queue Service Time (g ∘), s Cycle Queue Clearance Time (g ∘), s Cycle	Movement Gro	oup Res	sults			EB			W	3			NB			SB	
Adjusted Flow Rate (v), veh/h Adjusted Flow Rate (v), veh/h Adjusted Saturation Flow Rate (s), veh/h/ln 1730 1817 1697 1757 1845 1674 1283 1659 1265 1774 Queue Service Time (g s), s 0.5 1.9 2.0 1.1 2.3 2.5 2.3 6.1 4.9 4.9 4.8 Cycle Queue Clearance Time (g c), s 0.68 0.65 0.65 0.71 0.67 0.67 0.67 0.15 0.15 0.15 0.15 Capacity (c), veh/h 819 1182 1104 907 1233 1119 203 249 185 266 Volume-to-Capacity Ratio (X) Back of Queue (Q), ft/ln (95 th percentile) 7.3 31.5 31 91 0.00 0.09 0.098 0.104 0.159 0.444 0.349 0.356 Back of Queue (Q), veh/ln (95 th percentile) 7.3 31.5 31 0.00 0.00 0.01 0.10 0.00 0.00 0.34 0.00 0.58 0.00 Uniform Delay (d 1), s/veh 5.2 6.4 6.4 4.5 5.9 5.9 41.4 38.7 43.7 38.2 Initial Queue Delay (d 2), s/veh 0.0 0.1 0.1 0.1 0.0 0.2 0.2 0.2 0.1 0.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Approach Move	ement			L	Т	R	L	T	R		L	Т	R	L	Т	R
Adjusted Saturation Flow Rate (s), veh/h/ln 1730 1817 1697 1757 1845 1674 1283 1659 1265 1774 Queue Service Time (gs), s 0.5 1.9 2.0 1.1 2.3 2.5 2.3 6.1 4.9 4.8 Cycle Queue Clearance Time (gs), s 0.5 1.9 2.0 1.1 2.3 2.5 7.1 6.1 11.0 4.8 Green Ratio (g/C) 0.68 0.65 0.65 0.71 0.67 0.67 0.15 0.15 0.15 Capacity (c), veh/h 819 1182 1104 907 1233 1119 203 249 185 266 Volume-to-Capacity Ratio (X) 0.033 0.078 0.082 0.069 0.098 0.104 0.159 0.444 0.349 0.356 Back of Queue (Q), ft/ln (95 th percentile) 7.3 31.5 31 14.9 39 37.8 34 114.5 71.9 97.7 Back of Queue (Q), veh/ln (95 th percentile) 0.3 1.2 1.2 0.6 1.5 1.5 1.3 4.5 2.8 3.8 Queue Storage Ratio (RQ) (95 th percentile) 0.05 0.00 0.00 0.01 0.00 0.00 0.34 0.00 0.58 0.00 Uniform Delay (d1), s/veh 5.2 6.4 6.4 4.5 5.9 5.9 41.4 38.7 43.7 38.2 Incremental Delay (d2), s/veh 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Assigned Move	ment			5	2	12	1	6	16			8	18	7		14
Queue Service Time (g s), s 0.5 1.9 2.0 1.1 2.3 2.5 2.3 6.1 4.9 4.8 Cycle Queue Clearance Time (g c), s 0.5 1.9 2.0 1.1 2.3 2.5 7.1 6.1 11.0 4.8 Green Ratio (g/C) 0.68 0.65 0.65 0.67 0.67 0.67 0.15 <td>Adjusted Flow I</td> <td>Rate (v</td> <td>), veh/h</td> <td></td> <td>27</td> <td>92</td> <td></td> <td><u></u></td> <td>·</td> <td></td> <td>-0-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Adjusted Flow I	Rate (v), veh/h		27	92		<u></u>	·		-0-						
Cycle Queue Clearance Time (g c), s 0.5 1.9 2.0 1.1 2.3 2.5 7.1 6.1 11.0 4.8 Green Ratio (g/C) 0.68 0.65 0.65 0.65 0.71 0.67 0.67 0.15 0.18 0.34 0.25 0.34 0.25 0.34 0.25 0.34 0.25 0.34 0.00 0.05 0.00	N			n	1730				0		-0-		-		5		
Green Ratio (g/C) 0.68 0.65 0.65 0.71 0.67 0.67 0.15 0.26 0.34 0.00 0.34 0.00 0.34 0.00 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.00 0.00 0.00 0.00 0.00 0.00 0.00									ō		-0-				Ü		
Capacity (c), veh/h 819 1182 1104 907 1233 1119 203 249 185 266 Volume-to-Capacity Ratio (X) 0.033 0.078 0.082 0.069 0.098 0.104 0.159 0.444 0.349 0.356 Back of Queue (Q), ft/ln (95 th percentile) 7.3 31.5 31 14.9 39 37.8 34 114.5 71.9 97.7 Back of Queue (Q), veh/ln (95 th percentile) 0.3 1.2 1.2 0.6 1.5 1.5 1.3 4.5 2.8 3.8 Queue Storage Ratio (RQ) (95 th percentile) 0.05 0.00 0.00 0.11 0.00 0.00 0.34 0.00 0.58 0.00 Uniform Delay (d 1), s/veh 5.2 6.4 6.4 4.5 5.9 5.9 41.4 38.7 43.7 38.2 11.5 Incremental Delay (d 2), s/veh 0.0 0.1 0.1 0.0 0.2 0.2 0.1 0.5 0.4 0.3 0.0 Control Delay (d), s/veh 5.2 6.6 6.6 4.5			e Time (<i>g c</i>), s			-		<u> </u>	<u> </u>		-0-		-		0	_	
Volume-to-Capacity Ratio (X) 0.033 0.078 0.082 0.098 0.104 0.159 0.444 0.349 0.356 Back of Queue (Q), ft/ln (95 th percentile) 7.3 31.5 31 14.9 39 37.8 34 114.5 71.9 97.7 Back of Queue (Q), veh/ln (95 th percentile) 0.3 1.2 1.2 0.6 1.5 1.5 1.3 4.5 2.8 3.8 Queue Storage Ratio (RQ) (95 th percentile) 0.05 0.00 0.00 0.11 0.00 0.00 0.34 0.00 0.58 0.00 Uniform Delay (d1), s/veh 5.2 6.4 6.4 4.5 5.9 5.9 41.4 38.7 43.7 38.2 Incremental Delay (d2), s/veh 0.0 0.1 0.1 0.0 0.2 0.2 0.1 0.5 0.4 0.3 Initial Queue Delay (d3), s/veh 5.2 6.6 6.6 4.5 6.0 6.1 41.5 39.2 44.1 38.5 Level of Service (LOS)															0		
Back of Queue (Q), ft/ln (95 th percentile) 7.3 31.5 31 14.9 39 37.8 34 114.5 71.9 97.7 Back of Queue (Q), veh/ln (95 th percentile) 0.3 1.2 1.2 0.6 1.5 1.5 1.3 4.5 2.8 3.8 □ Queue Storage Ratio (RQ) (95 th percentile) 0.05 0.00 0.00 0.11 0.00 0.00 0.34 0.00 0.58 0.00 Uniform Delay (d 1), s/veh 5.2 6.4 6.4 4.5 5.9 5.9 41.4 38.7 43.7 38.2 □ Intrial Queue Delay (d 2), s/veh 0.0 0.1 0.1 0.0 0.2 0.2 0.1 0.5 0.4 0.3 □ Control Delay (d), s/veh 5.2 6.6 6.6 4.5 6.0 6.1 41.5 39.2 44.1 38.5 □ Level of Service (LOS) A A A A A A A A D D D D D Intersection Delay, s/veh / LOS EB B			r:- (\\														
Back of Queue (Q), veh/ln (95 th percentile) 0.3 1.2 1.2 0.6 1.5 1.5 1.3 4.5 2.8 3.8 Queue Storage Ratio (RQ) (95 th percentile) 0.05 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.34 0.00 0.58 0.00 0.00 0.01 0.					Vi-				0								
Queue Storage Ratio (RQ) (95 th percentile) 0.05 0.00 0.00 0.11 0.00 0.00 0.34 0.00 0.05 0.00 0.11 0.00 0.00 0.34 0.00							-5				-0-	-					
Uniform Delay (d 1), s/veh 5.2 6.4 6.4 4.5 5.9 5.9 41.4 38.7 43.7 38.2 Incremental Delay (d 2), s/veh 0.0 0.1 0.1 0.0 0.2 0.2 0.2 0.1 0.5 0.4 0.3 Initial Queue Delay (d 3), s/veh 0.0 <td>K</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	K					<u> </u>							-				
Incremental Delay (d ₂), s/veh 0.0 0.1 0.1 0.0 0.2 0.2 0.1 0.5 0.4 0.3 Initial Queue Delay (d ₃), s/veh 0.0				illo)						_						5	
Initial Queue Delay (d ₃), s/veh 0.0 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-0-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-									-0-						
Control Delay (d), s/veh 5.2 6.6 6.6 4.5 6.0 41.5 39.2 44.1 38.5 Level of Service (LOS) A A A A A A A A D									-	_	-0-				Ğ	<u> </u>	
Level of Service (LOS) A A A A A A A A A A A D <td></td> <td colspan="4"></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>39.2</td> <td></td> <td>4</td> <td></td> <td></td>													39.2		4		
Approach Delay, s/veh / LOS 6.4 A 5.7 A 39.7 D 40.8 D Intersection Delay, s/veh / LOS Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 2.2 B 2.2 B 2.9 C 2.9 C		evel of Service (LOS)				<u> </u>		А	Α	А		D	D		D	D	
Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 2.2 B 2.2 B 2.9 C 2.9 C		Approach Delay, s/veh / LOS					Α	5.7		Α		39.7		D	40.8	3	D
Pedestrian LOS Score / LOS 2.2 B 2.2 B 2.9 C 2.9 C		Intersection Delay, s/veh / LOS					18	8.8		SUPERIOR DE	I			U.allii	В	010, 1110110	SIND
Pedestrian LOS Score / LOS 2.2 B 2.2 B 2.9 C 2.9 C	Multimodal Pa	Multimodal Results				FR		jans Mi	\//	B		6X 7 (1)	NB	AND THE		SB	Harry Co.
							В	2.2	_			2.9	_	С	2.9	-	С
											1						

		HCS 201	0 Si	gna	alize	d Int	ersect	ion	Inte	erme	diate V	/alues	3			
1 22 C 41										1					Will Br	S& B
General Inforn	nation			_						+	section l				1 4 77 4 P	
Agency		Eriksson Engineerin	9				press				tion, h	0.2				-
Analyst		SBC		└	_		Apr 12,			Area	Туре	Ott				-
Jurisdiction		DuPage/Bartlett		Ti	me Pe	riod	Saturda Peak	y Exis	sting	PHF		0.9		**************************************		
Urban Street		Devon Avenue		Ar	nalysis	Year	2016				sis Perio	od 1>	17:30		1 1	
Intersection		Prospect Avenue		Fil	le Nan	ne	Friday E	xistin	g.xu	s					ጎተተቀነ	ት C
Project Descrip	tion	Saturday Existing Vo	lumes										Name and Address of the Owner, where the Owner, which is the Owner, wh			
Demand Inform	nation	Mark of Walter	7 . 3	No.		EB			V	VB	P. C.	V TOTAL	IB		SB	III S DOIN
Approach Move					L	Т	R	L		Т	R		T R	L	T	R
Demand (v), v					26	141	34	60					10 66	62	71	20
Bomana (1);			A 100	100	N. FOR		3,197		RE	THE REAL PROPERTY.		Ruis			lings in	
Signal Informa	ition						5_						السالة			
Cycle, s	100.0	Reference Phase	2		-	7 6	2	= ₹ 1	3	502			-	♦.		xtx
Offset, s	0	Reference Point	End	G	reen 3	3.2	1.8	65.1	1	5.0	0.0	.0		N 2		
Uncoordinated	No	Simult. Gap E/W	On		ellow		0.0	4.0	4			.0		7		心
Force Mode	Fixed	Simult. Gap N/S	On	Re	ed (0.0	0.0	2.0	2.	.0	0.0	.0	5	6	7	1
THE STATE OF			L. Supr					1 311				12/000		hor El		
					EB			True True	√B			NB			SB	
Saturation Flo	w / Dela	ay	L	_	Т	R	L		-	R	L	Т	R	L	Т	R
Lane Width Adj	ustment	t Factor (fw)	1.0	00	1.000	_	_			1.000	1.000	1.000	_	1.000	1.000	1.000
Heavy Vehicle	eavy Vehicle Adjustment Factor (fHV) pproach Grade Adjustment Factor (fg)			71	0.971	_		-0		0.971	0.971	0.971		0.971	0.971	0.971
Approach Grad	pproach Grade Adjustment Factor (fg)				0.985				$\overline{}$	1.000	1.000	1.000	-	1.000	1.000	1.000
Parking Activity	arking Activity Adjustment Factor (f _D)			00	1.000				-	1.000	1.000	1.000		1.000	1.000	
Bus Blockage A	Adjustme	ent Factor (fbb)	1.0		1.000			-		1.000	1.000	1.000	_	1.000	1.000	
Area Type Adju	stment	Factor (f _a)	1.0	\rightarrow	1.000					1.000	1.000	1.000	-0	1.000	1.000	
		nent Factor (<i>f</i> ∟ <i>∪</i>)	1.0		1.000				_	1.000	1.000	1.000		1.000	1.000	
Left-Turn Adjus			0.9	52	0.000		0.952	-5				0.000			0.000	
Right-Turn Adju			_	_	0.934	_		0.9	800			0.899			0.962	-
		djustment Factor (fடம		00		-	1.000		_		1.000		1.000	1.000		1 000
		djustment Factor (fRoi				1.00		- 05		1.000		000	1.000		4004	1.000
		low Rate (s), veh/h	17	-	2847		1757	-		0.07	0.45	626	0.45	0.45	1384	0.45
		Arriving on Green (P)		$\overline{}$	0.65	0.65				0.67	0.15	0.15	0.15	0.15	0.15	0.15
Incremental De	lay Fac	tor (k)	0.0)4	0.50	0.50	0.04	0.	50	0.50	0.04	0.04	0.00	0.04	0.04	
Signal Timing	/ Move	ment Groups		EBL	SECTION S.	EBT/R	W	BL	W	BT/R	NB	L	NBT/R	SBI		SBT/R
Lost Time (t _L)				3.0		6.0	3.	0		6.0			6.0			6.0
Green Ratio (g.	/C)			0.68		0.65	0.7	71	C).67			0.15			0.15
Permitted Satu	ration F	low Rate (s₀), veh/h/l	n í	1110		0	118	85		0			1283			1265
Shared Saturat	ion Flov	v Rate (ssh), veh/h/ln														
		een Time (g₀), s		35.1		0.0	65	.8		0.0			15.0			15.0
Permitted Serv	ice Time	e (gu), s		32.3		0.0	63	.1		0.0			10.2			8.9
		ce Time (gos), s		0.1	_		0.						2.3			4.9
	ime to First Blockage (<i>gi</i>), s		_	0.0		0.0	0.	0		0.0			0.0			0.0
	ueue Service Time Before Blockage (g/s),															
	rotected Right Saturation Flow (s _R), veh/h/						-									
	Protected Right Effective Green Time (g_R) , s			- ~												
Multimodal					EB				VB			NB			SB	
	Pedestrian Fw / Fv			.55	$\overline{}$	0.00	1.5			0.00	2.10		0.00	2.10		0.00
-	Pedestrian Fs / Fdelay			.00	0	0.073	0.0	00	0	.068	0.00	0	0.144	0.00	0	0.144
	edestrian Mcomer / Mcw															00.15
Bicycle c _b / d _b	cycle c _b / d _b			01.		6.10	1330			5.50	299.9		36.13	299.9	_	36.13
Bicycle Fw / Fv				3.64	4	0.17	-3.	64		0.25	-3.6	4	0.24	-3.6	4	0.26

Generated: 4/12/2016 11:17:13 AM

		НС	S 201	I0 Sig	nali	zed l	nte	ersec	tio	n In	put	Data					
TO THE REAL PROPERTY.																	
General Inforn	nation									Int	ersect	ion Inf	ormatic	n		4741	h 1.
Agency		Eriksson Engineerir	ng							Du	ration,	h	0.25			Skribe:	
Analyst		SBC		Analys	is Da	te Apr	12	, 2016		Are	еа Тур	е	Other		.		A. A.
Jurisdiction		DuPage/Bartlett		Time F	Period	I Sat		ay Tota	ıl	PH	I F		0.96		*		÷
Urban Street		Devon Avenue		Analys	is Ye	ar 201	16				alysis	Period	1> 17	:30		112	
Intersection		Prospect Avenue		File Na	ame	Fric	day	Existin	g.xus	S] 7	4 (4.4	- 1
Project Descrip	tion	Saturday Total Volu	mes														
	200					12 100	ğ			1/	-077	15	3 line -	U. Yell			
Demand Inform					E	3			V	VB			NB			SB	
Approach Move	ement			L	T	_	₹	L	_	T	R	L	T	R	L	T	R
Demand (v), v	eh/h			27	14	3 3	4	75	1	85	63	31	40	69	62	75	23
	NI THE AND	ELTONOMIC PROPERTY.	Ayla		pu fe	A LANGE	115						NE CONT		E N		
Signal Informa		D (D)	-	1	_23		-	, n	1	15							本
Cycle, s	100.0	Reference Phase	2			16	16	3		"MY	76			1	7 2	3	4
Offset, s	0	Reference Point	End	Green		2.1		64.7		5.0	0.0	0.0			_		9 J. (E. 1
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0		4.0	4.		0.0	0.0					V
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0)	2.0	2.	0	0.0	0.0		5	6	7	8
						ALC: PAY	-	1			MA SAN	18/10		OIX S		O.D.	
Traffic Informa					EB				W	_			NB		<u> </u>	SB	
Approach Move				L	Т	R		L	Т		R	L	Т	R	L	Т	R
Demand (v), ve				27	143			75	18		63	31	40	69	62	75	23
					0	0		0	0	_	0	0	0	0	0	0	0
	ase Saturation Flow Rate (s _o), veh/h				190		00	1900	190		1900	1900	1900	1900	1900	1900	1900
h	arking (Nm), man/h				Non	е	_		Nor	_	_		None			None	
Heavy Vehicles		%		3	3		_	3	3	_		3	3		3	3	
Ped / Bike / RT	-			0	0	0		0	0		0	0	0	0	0	0	0
Buses (N _b), bus				0	0	0		0	0		0	0	0	0	0	0	0
Arrival Type (A				3	3	3		3	3		3	3	3	3	3	3	3
Upstream Filter				1.00	1.00		0	1.00	1.0		1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W				12.0	12.0	1	-	12.0	12.	_		12.0	12.0		12.0	12.0	
Turn Bay Lengt	th, ft			135	0	-	_	135	0	_		100	0		125	0	-
Grade (<i>Pg</i>), %					3		_		0				0			0	
Speed Limit, m	i/h			35	35	35		35	35	5	35	30	30	30	25	25	25
Phase Informa	tion			EBL	211111111111111111111111111111111111111	EBT	-	WBI		۱۸/	/BT	NBL		NBT	SBL		SBT
) or Phase Split, s		20.0		45.0	-	20.0	_		5.0	INDE		35.0	ODE		35.0
Yellow Change			_	3.0		4.0	-	3.0			1.0		_	4.0	-	_	4.0
Red Clearance				0.0		2.0	-	0.0	$\overline{}$		2.0		_	2.0			2.0
Minimum Gree				6	_	6	-1	6	\dashv	_	6	6	-	15	6	_	15
Start-Up Lost T				2.0	-	2.0		2.0	_		2.0	2.0	-	2.0	2.0		2.0
Extension of Ef				2.0		2.0		2.0			2.0	2.0	-	2.0	2.0		2.0
Passage (PT),		2.30.1 (3), 0		2.0		2.0		2.0	\rightarrow	_	2.0	2.0		2.0	2.0		2.0
Recall Mode				Off		Min		Off	_		lin	Off		Off	Off		Off
Dual Entry				No		Yes		No	_		'es	No		Yes	No		Yes
Walk (Walk), s				0.0		0.0	7	0.0			0.0	0.0	_	0.0	0.0	_	0.0
	edestrian Clearance Time (<i>PC</i>), s			0.0	_	0.0		0.0	_		0.0	0.0		0.0	0.0		0.0
. SESSERIAN ORG		KAT THE STATE OF THE SEA	20 75 80	WIN.		HISIA		A THE			19 /8		SUPPLIES.			NA PARE	JUNE 1
	lultimodal Information 5th % Speed / Rest in Walk / Corner Radius				EB				W	-			NB			SB	
			us	0	No			0	No		25	0	No	25	0	No	25
		Vidth / Length, ft		9.0	12		_	9.0	12	_	0	9.0	12	0	9.0	12	0
6	reet Width / Island / Curb				0	No		0	0		No	0	0	No	0	0	No
·	tth Outside / Bike Lane / Shoulder, ft				5.0		0	12	5.0	_	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Sign	nal / Oc	cupied Parking		No		0.50		No		0.	.50	No		0.50	No		0.50

		HCS 20	010 S	ignali	zed l	nterse	ection	Res	ults S	umm	ary				
			A Barre	200	3183	VILVA A			n stru	VI LEED				4 1.4-1	THE PER
General Inforn	nation								ntersec			n	- 6		
Agency		Eriksson Engineerir	ng	·					Duration		0.25		-		
Analyst		SBC		C		Apr 12			Area Typ	е	Other				- 2
Jurisdiction		DuPage/Bartlett		Time F	Period	Saturo Peak	lay Tota	il F	PHF		0.96		* * * * * * * * * * * * * * * * * * *		- - +
Urban Street		Devon Avenue		Analys	is Yea				Analysis	Period	1> 17	:30		5.4	
Intersection		Prospect Avenue		File Na	ame	Friday	Existin	g.xus						41471	- 6
Project Descrip	tion	Saturday Total Volu	mes				No.		- 10010	ENESSONS	218 18	SIGNATURE	-	S WITH	COLUMN TO THE REAL PROPERTY.
Demand Inform	mation		SEX S		EB	1 7	3/11/2 /	WB		NAME OF TAXABLE PARTY.	NB		JA 20	SB	1112
Approach Move	ement			L	Т	R	L	T	R	L	T	R	L	T	R
Demand (v), v	reh/h			27	143	34	75	185	63	31	40	69	62	75	23
			9,5410	Ma A			Cont.			المراث			(Challed		
Signal Informa						- 6			a l			_		3. 34	λ
Cycle, s	100.0	Reference Phase	2				3	18	17			1	Q 2	3	4
Offset, s	0	Reference Point	End	Green		2.1	64.7	15.0	0.0	0.0		100	_	The Park	
Uncoordinated	No	Simult. Gap E/W	On	Yellow Red	0.0	0.0	2.0	4.0 2.0	0.0	0.0			2	7	Y
Force Mode	Fixed	Simult. Gap N/S	On	Red	10.0	10.0	12.0	12.0	10.0	10.0		THEFT	WILDOW A	TO USE	
Timer Results	VIGIT S			EBI		EBT	WB	L	WBT	NBI		NBT	SBI		SBT
Assigned Phas				5		2	1		6			8			4
Case Number				1.1	o	4.0	1.1	\neg	4.0			6.0			6.0
Phase Duration	1, S			6.3		70.7	8.3		72.7			21.0			21.0
Change Period	nange Period, (Y+R c), s					6.0	3.0		6.0			6.0			6.0
Max Allow Hea	nange Period, (Y+R c), s ax Allow Headway (<i>MAH</i>), s					0.0	3.1		0.0			3.3			3.3
Queue Clearan	ice Time	e (g s), s		2.5			3.3					9.5			13.2
Green Extension	on Time	(ge), s		0.0		0.0	0.1		0.0			0.6			0.6
Phase Call Pro				0.54	$\overline{}$		0.89					1.00		_	1.00
Max Out Proba	bility		W III	0.00			0.00			POSTER		0.00			0.00
Movement Gro	oup Res	sults		N I I I I I I I I I I I I I I I I I I I	EB	Ken L		WB	2 (0)		NB		8/162	SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow	Rate (v	'), veh/h		28	93	91	78	132	126	32	114		65	102	
		ow Rate (s), veh/h/l	ln	1730	1817	·	1757	1845		1275	1656		1262	1770	
Queue Service				0.5	1.9	2.0	1.3	2.6	2.7	2.3	6.3		4.9	5.2	
		e Time (g c), s		0.5	1.9	2.0	1.3	2.6	2.7	7.5	6.3	_	11.2	5.2	
Green Ratio (g				0.68	0.65	0.65 1098	0.71 907	0.67 1231	0.67	0.15 197	0.15 248	_	0.15 182	0.15 265	
Capacity (c), v		etio / V \		804 0.035	1175 0.079	-0	0.086	0.107		0.164	0.457	_	0.354	0.385	
		/In (95 th percentile)		7.7	32.4	31.8	18.6	42.9	41.4	34.2	118		72.2	105.8	\vdash
		eh/ln (95 th percenti		0.3	1.3	1.2	0.7	1.7	1.6	1.3	4.6		2.8	4.1	
		RQ) (95 th percent		0.06	0.00	0.00	0.14	0.00	0.00	0.34	0.00		0.58	0.00	
Uniform Delay				5.3	6.6	6.6	4.4	6.0	6.0	41.7	38.8		43.9	38.3	
-	ncremental Delay (d 2), s/veh				0.1	0.1	0.0	0.2	0.2	0.1	0.5		0.4	0.3	
Initial Queue D	nitial Queue Delay (d ȝ), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
V	Control Delay (d), s/veh				6.7	6.7	4.4	6.1	6.2	41.9	39.3		44.3	38.7	
Level of Servic				Α	Α	A	Α	A	Α	D	D		D	D	
	Approach Delay, s/veh / LOS ntersection Delay, s/veh / LOS					Α	5.8		Α	39.9		D	40.9)	D
Intersection De	elay, s/ve	eh / LOS	(i) 195-1 ₁			18	3.5	4	57V.10.5	PANVERS.	1 70		В	JE 53	
Multimodal Re	fultimodal Results				EB		CONTRACT.	WB	2017/2/13/	EU IN	NB	100 100		SB	n blue in
	edestrian LOS Score / LOS				T	В	2.2		В	2.9		С	2.9		С
Bicycle LOS So		×		0.7		Α	0.8		Α	0.7		Α	0.8		Α

		HCS 20'	0 Si	gn	alize	d Int	ersect	ion	Inte	erme	diate V	/alue	S			
	A MIS			Re	1000	2016		Stylik	T^{2N}	Br Jarini				"util tide		
General Inforn	nation			_							section			- 1	ا ماه ماد اله الي با الع	P 14
Agency		Eriksson Engineerin	g	-						Durat		0.2				
Analyst		SBC		-0			Apr 12,			Area	Туре		her			<u>.</u>
Jurisdiction		DuPage/Bartlett		Ti	me Pe	riod	Saturda Peak	y Tota	al 	PHF		0.9	96	* + +		
Urban Street		Devon Avenue		Α	nalysis	Year	2016				sis Perio	od 1>	17:30	_ `_	5.4	
Intersection		Prospect Avenue		Fi	le Nan	ne	Friday E	xistin	g.xu	S					14141	11.0
Project Descrip	tion	Saturday Total Volur	nes										-			-
Demand Inform	mation		100		S Sim	EB				NB	THE WAY		/B		SB	1
Approach Move			-	╁	L T	T	R	L	T	T	R	-	T R		T	R
Demand (v), v				┰	27	143	34	75	1				10 69	62	75	23
Belliana (1);		PIV N.B.R.	S 1738				100	47 (E)	da			02.110	19132			
Signal Informa	ition						5_		J.							
Cycle, s	100.0	Reference Phase	2	1	-	31 6	2		ZT -	SAZ			-	4	419	T.
Offset, s	0	Reference Point	Énd		reen	3 3	2.1	64.7	1		0.0	.0	1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On		ellow		0.0	4.0				.0		→		N.
Force Mode	Fixed	Simult. Gap N/S	On	The same		0.0	0.0	2.0				.0	6	6	7	
	71.00			13												
					EB			V	/B			NB			SB	
Saturation Flo	w / Dela	ay			Т	R	L] 7		R	L	T	R	L	Т	R
Lane Width Adj	ustmen	t Factor (fw)	1.0	000	1.000	1.00	0 1.000	1.0	00	1.000	1.000	1.000	1.000	1.000	1.000	
Heavy Vehicle	eavy Vehicle Adjustment Factor (fnv)		0.9	71	0.971	0.97	1 0.971	0.9	71	0.971	0.971	0.971	0.971	0.971	0.971	0.971
Approach Grad	pproach Grade Adjustment Factor (f_g)			985	0.985	0.98	5 1.000	1.0	00	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Parking Activity	pproach Grade Adjustment Factor (fg) arking Activity Adjustment Factor (fo)		1.0	000	1.000	1.00	0 1.000	1.0	00	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Bus Blockage A	Adjustm	ent Factor (fbb)	1.0	000	1.000	1.00	0 1.000	1.0	00	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Area Type Adju	stment	Factor (fa)	1.0	000	1.000	1.00	0 1.000	1.0	00	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Lane Utilization	ı Adjustr	ment Factor (f⊥∪)		000	1.000	1.00	0 1.000	1.0	00	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Left-Turn Adjus	tment F	actor (flt)	9.0	952	0.000		0.952	0.0	00			0.000			0.000	
Right-Turn Adju	ustment	Factor (frt)			0.935			0.9	15			0.898			0.959	
		djustment Factor (fடா		000			1.000		_		1.000			1.000		
		djustment Factor (fRo				1.00		_	_	1.000			1.000			1.000
		low Rate (s), veh/h		30	2855	_	1757					608			1355	
		Arriving on Green (P)		03	0.65	0.65			_	0.67	0.15	0.15	0.15	0.15	0.15	0.15
Incremental De	lay Fac	tor (k)	0.	04	0.50	0.50	0.04	0.	50	0.50	0.04	0.04		0.04	0.04	
Signal Timing	/ Move	ment Groups	The same	EBI	la livere	EBT/R	W	BL	V	/BT/R	NBI		NBT/R	SBI		SBT/R
Lost Time (t _L)				3.0		6.0	3.	0		6.0			6.0			6.0
Green Ratio (g.	/C)			0.68	3	0.65	0.7	71	(0.67			0.15			0.15
		low Rate (s₀), veh/h/l	n	108	9	0	118	33		0			1275			1262
Shared Saturat	ion Flov	v Rate (ssh), veh/h/ln														
***		een Time (g₀), s		64.7		0.0	65		_	0.0			15.0			15.0
Permitted Serv				62.0		0.0	62			0.0		_	9.8			8.7
		ice Time (gos), s	╁	0.1	-	0.0	0.			0.0		_	2.3	-		4.9
	ime to First Blockage (gr), s		-	0.0	_	0.0	0.	0		0.0		-	0.0			0.0
	Queue Service Time Before Blockage (g/s), s		_		_		-		_		-				-	
	Protected Right Saturation Flow (s _R), veh/h/lr Protected Right Effective Green Time (g _R), s		_				-		_			_		-	_	
				e		-				-				-		
Multimodal	Multimodal Pedestrian <i>F_w I F_v</i>				EB	0.00	4 -		VB	2.00	0.40	NB	0.00	0.40	SB	0.00
	Pedestrian Fw / Fv Pedestrian Fs / Fdelay			1.55		0.00	1.5	_		0.00	2.10		0.00	2.10		0.00
	Pedestrian Fs / Fdelay Pedestrian Mcomer / Mcw			0.00	U	0.073	0.0	UU	U	.069	0.00	U	0.144	0.00	U	0.144
	edestrian Mcomer / Mcw icycle cb / db			200	72	604	400	1.07		E E2	200.4	06	26.12	299.9	06	36.13
				293.		0.18	133			5.53	299.9		36.13 0.24	-3.6		0.28
Bicycle Fw / Fv				-3.6	4	0.18	-3.	U4		0.28	-3.6	-	U.Z4	-3.04	7	U.Z0

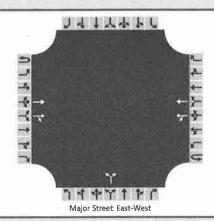
Generated: 4/12/2016 11:17:13 AM

	M	essages	
--	---	---------	--

No errors or warnings exist.

--- Comments ---

Copyright © 2016 University of Florida, All Rights Reserved.


HCS 2010™ Streets Version 6.80

Generated: 4/12/2016 11:17:13 AM

HCS 2010 Two-Way Stop Control Summary Report **Site Information General Information** Devon Ave/Site Drive SBC Intersection Analyst Agency/Co. **Eriksson Engineering** Jurisdiction **DuPage County Date Performed** 4/12/2016 East/West Street Devon Avenue North/South Street Ashton Gardens Drive Analysis Year 2016 0.97 Time Analyzed Fridday Total Peak Peak Hour Factor Intersection Orientation East-West Analysis Time Period (hrs) 0.25

Lanes

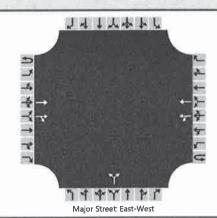
Project Description

Vehicle Volumes and Adjustments

Ashton Gardens

Approach		Eastbound				West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	0	0
Configuration			Т	TR		LT	Т				LR					
Volume (veh/h)			362	21		23	443			3		3				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized		١	10			١	lo			N	lo			١	lo	
Median Type	Undivided															

Delay, Queue Length, and Level of Service


Median Storage

Flow Rate (veh/h)	253	6	
Capacity	1153	513	
v/c Ratio	0.22	0.01	
95% Queue Length	0.1	0.0	
Control Delay (s/veh)	8.2	12.1	
Level of Service (LOS)	A	В	
Approach Delay (s/veh)	0.5	12.1	
Approach LOS		В	

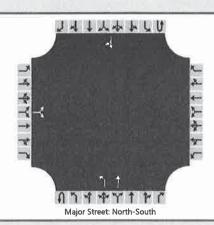
HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	SBC	Intersection	Devon Ave/Site Drive
Agency/Co.	Eriksson Engineering	Jurisdiction	DuPage County
Date Performed	4/12/2016	East/West Street	Devon Avenue
Analysis Year	2016	North/South Street	Ashton Gardens Drive
Time Analyzed	Saturday Total Peak	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Ashton Gardens		

Lanes

Vehicle Volumes and Adjustments

Approach		Eastbound				West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	0		0	0	0
Configuration			Т	TR		LT	Т				LR					
Volume (veh/h)			201	21		23	216			3		3				
Percent Heavy Vehicles						3				3		3				
Proportion Time Blocked																
Right Turn Channelized		No				١	No.			١	lo			١	10	
Median Type	Undivided															


Median Storage

Delay, Queue Length, and Level of Service

Flow Rate (veh/h)	137	6	
Capacity	1327	700	
v/c Ratio	0.10	0.01	
95% Queue Length	0.1	0.0	
Control Delay (s/veh)	7.8	10.2	
Level of Service (LOS)	A	В	
Approach Delay (s/veh)	0.8	10.2	
Approach LOS		В	

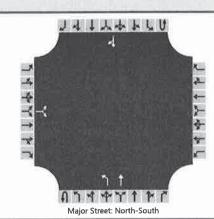
HCS 2010 Two-Way Stop Control Summary Report **General Information Site Information** SBC Prospect Ave/Site Drive Analyst Intersection Agency/Co. **Eriksson Engineering** Jurisdiction Village of Bartlett **Date Performed** 4/12/2016 East/West Street Ashton Gardens Drive **Analysis Year** 2016 North/South Street **Prospect Avenue** Friday Total Peak **Peak Hour Factor** 0.97 Time Analyzed 0.25 Intersection Orientation North-South Analysis Time Period (hrs) **Project Description** Ashton Gardens

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	1	1	0	0	0	1	0
Configuration			LR							L	Т					TR
Volume (veh/h)		3		1						7	135				214	19
Percent Heavy Vehicles		3		3						3						
Proportion Time Blocked																
Right Turn Channelized		١	lo			N	lo			N	lo			١	lo	
Median Type								Left	Only							

Delay, Queue Length, and Level of Service


Median Storage

Flow Rate (veh/h)	4			7				
Capacity	682			1318				
v/c Ratio	0.01			0.01				
95% Queue Length	0.0			0.0				
Control Delay (s/veh)	10.3			7.7				
Level of Service (LOS)	В			Α				
Approach Delay (s/veh)	10.3			0	.4			
Approach LOS	В							

HCS 2010 Two-Way Stop Control Summary Report

General Information		Site Information	
Analyst	SBC	Intersection	Prospect Ave/Site Drive
Agency/Co.	Eriksson Engineering	Jurisdiction	Village of Bartlett
Date Performed	4/12/2016	East/West Street	Ashton Gardens Drive
Analysis Year	2016	North/South Street	Prospect Avenue
Time Analyzed	Saturday Total Peak	Peak Hour Factor	0.97
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Ashton Gardens		

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	1	1	0	0	0	1	0
Configuration			LR							L	Т					TR
Volume (veh/h)		3		1						7	137				165	19
Percent Heavy Vehicles		3		3						3						
Proportion Time Blocked																
Right Turn Channelized	No No			No				No								
Median Type	Left Only															

Delay, Queue Length, and Level of Service

Median Storage

Flow Rate (veh/h)	1 4 1	7		
Capacity	715	1376		
v/c Ratio	0.01	0.01		
95% Queue Length	0.0	0.0		
Control Delay (s/veh)	10.1	7.6		
Level of Service (LOS)	В	A		
Approach Delay (s/veh)	10.1	0.4		
Approach LOS	В			

FIGURE 1. Ashton Gardens - Site Plan Considerations

RECEIVED COMMUNITY DEVELOPMENT oulter Transportation Consulting, LLC

ILIN n 7 2016

VILLAGE OF BARTLETT

MEMO

To: Roberta Grill, Village of Bartlett From: Brent Coulter, PE, PTOE

Date: 6/7/2016

Re: Traffic Engineering Review of the Proposed Ashton Gardens Wedding Chapel and Banquet Facility (Devon Ave. at Prospect Ave. in Bartlett, IL).

Per your request I have prepared this review of traffic and parking for the proposed Ashton Gardens based on the Site Plan, Traffic Impact Study prepared by Eriksson Engineering Associates, Ltd., "Autoturn" exhibits and other reports and plans provided by the Village for the proposed development. The following specific areas were addressed:

- Traffic generation and assignment and subsequent capacity and impact analysis at site driveways and the off-site intersection of Devon and Prospect.
- Overall site accessibility, driveway sight lines and access routing.
- Internal circulation including emergency vehicle accessibility.
- Proposed site parking supply and demand.

I. Site Accessibility and Offsite Intersection Traffic (Capacity) Impact

The site Traffic Impact Study analyzes proposed site driveway access on Devon Avenue and on Prospect Avenue, as well as the adjacent off-site signalized intersection of Devon and Prospect with and without the proposed wedding/reception use. The traffic study assumed, as a worst-case scenario, that the proposed use would coincide with the peak hour of background traffic counted on a Friday afternoon (as discussed later in the parking review, the projected site trip estimates are also high because they assume the wedding and reception facilities as separate trip generating entities when in fact many wedding guests will stay on site and not generate a "new" second inbound trip for the reception).

a. Site and Off-Site Capacity (Level of Service)

Both the 4-lane Devon Ave. (+/- 4,500 vpd west of Prospect based on factoring up from peak hour counts) and the 3-lane Prospect Ave. (2,400 vpd south of Devon) are relatively low-volume streets for their cross-sections. The applicant's traffic study found that the proposed use would not measurably change the existing level of service at the Devon/Prospect intersection (operating at a good overall Level of Service B) and that each unsignalized site driveway access would operate at a very good LOS A/B (with no left-turn lanes on either Devon or Prospect serving site access points).

This analysis Site traffic was assigned primarily to Devon Avenue (80%). Only 10% of site traffic was assigned to/from the north on Prospect—which connects with Lake Street (US 20) a major east-west arterial. I think this estimate to/from the north could be significantly higher but do not believe it will appreciably impact the findings of the capacity analysis.

b. Overall Site Accessibility (Wayfinding)

Trips to and from the east via US 20 (Lake Street) encounter a rather circuitous routing via Ontarioville Road at US 20, and then a jog at Newport Blvd. that could be confusing to those unfamiliar with the area. Trips to/from the NW could come down Oak Avenue and then are faced with a variety of street routings (North Ave. to Prospect, or Railroad Ave. to S, Main to Devon, or Railroad Avenue to Prospect) to access the site, while trips from the west on West Bartlett Road could continue onto Railroad Ave. to Prospect or down S. Bartlett Road to Devon Avenue. It would be desirable for Ashton Gardens management to consult with Village staff on preferred access routings displayed on their web site.

II. Driveway Access Design/Internal Circulation

a. Turn Lane Warrants

The TIS concludes that no left-turn lanes are warranted on Devon Avenue or Prospect Avenue but no supporting warrant analysis was provided. A quick check of IDOT BDE Manual Figures 36-3.A and 36-3.B indicate that right-turn lanes are not warranted on either Devon Avenue or Prospect Avenue. A left-turn lane is not warranted on Prospect Avenue based on a volume check (assuming a conservatively volume on Prospect at the site access drive) based on IDOT BDE Figure 36-3.G. The combination of opposing EB peak hour volume on Devon and projected WB site access left turns on the Harmelink warrant charts for 4-lane arterials show the combination right at, or slightly below warranting left-turn storage (but as noted earlier site trips may be overestimated).

b. Site Access Location/Design

As shown in Figure 1., the Devon Avenue access is located approximately 220 feet west of Prospect and falls opposite the striped taper median area for the EB left-turn lane on Devon at Prospect. At this point the EB tape width is approximately 9 feet and in such cases there may be a tendency for WB left-turns into the site to straddle this median area as they wait to make their turn. One consideration would be to relocate this access to the west as shown in Figure 1. This could also result in the addition of +/- 6 parking spaces (see parking review that follows). In any event, this part of Devon Avenue is under the jurisdiction of DuPage County and they would have final authority on access location. Relocation of the driveway to the west also improves exiting sight lines relative to vehicle queued on red indications on Devon at the Prospect Ave. signal.

The Prospect Avenue access shown on the Site Plan falls generally opposite a diagonally striped median and beginning of a SB left-turn lane taper serving Lido Terrace. Under the same rational as discussed above, it may be advantageous to consider restriping this median area on Prospect to provide a legal left-turn storage area for inbound site left-turns while still maintaining the SB left-turn lane (with reduced taper length) for Lido Terrace as shown in Figure 1.

c. Internal Circulation and (Fire) Truck Access

A separate truck service berth and refuse truck access is provided by a separate truck-only access on the west side (rear) of the reception hall building. This would require service vehicles or fire trucks to back out onto Devon Ave., but maximizes green area on the site and separates trucks from guest traffic. A turn-around pad for smaller delivery trucks could be considered south of Devon on this service drive (see Figure 1.).

An aerial fire truck turning path exhibit was provided in support of the Site Plan and shows a vehicle just able to navigate the around the winding parking access aisle at the south end of the site near the office building. The Village should determine if this design vehicle adequately reflects wheelbase, length and turning radii of their own fire equipment. I would suggest consideration of modifying the curb line near the office building area if possible, as shown in Figure 1 (this may require some minor shifting of the office building further west).

III. Parking Supply

The applicant's traffic and parking study suggests that their parking analysis may be overstated (double-counted) since they treat the wedding chapel function and the reception hall as separate and distinct parking generators even though it appears that these two functions are generally codependent, with most guests attending the wedding also remaining parked and staying for the reception. I concur with the possibility that the applicant's report may have double-counted parking demand but only if a sufficient time-gap is scheduled between the end of the wedding service and the beginning of the reception to allow those wedding service attendees not staying to leave prior to reception guests arriving.

Based on the above, I have reflected in Table 1., below, the Village staff's calculation of required parking supply based only on the reception facility. These calculations appear to reflect a high occupancy of 3.3 person per vehicle (PPV) for social-recreational trips. I have added in two additional "demand" scenarios based on typical auto occupancies for social-recreation events of in the range of 2.5 to 3.0 persons per vehicle (PPV). The Demand Scenario I in Table 1 assumes an average occupancy of 2.5 (PPV) based on the 2.34 PPV from a 2009 study of auto occupancy study at various churches within the County, by DuPage County. Demand Scenario 2 assumes a higher occupancy of 3.0 PPV. In both scenarios, employee parking demand was based on an average suburban Chicago occupancy of 1.2 PPV. In my scenarios, projected parking demand was adjusted to a recommended parking supply by dividing demand by a design supply factor of ".85" to help assure that finding a space is convenient and does not require constant recirculation, and that also takes into account snow removal needs, etc.

The parking supply sensitivity analysis above shows a range of a parking shortfall of 25 spaces under Demand Scenario 1 to a surplus of 12 and 36 spaces for Demand Scenario 2 and the Village Ordinance respectively. In my opinion therefore, the possibility of a parking shortfall exists in cases where the reception hall is fully occupied and/or insufficient time gap is scheduled to allow wedding service only guests to exit the site before the arrival of post wedding reception guests. To be fair, the applicant's report does state that Ashton Gardens reports a peak parking demand of 125 spaces at other of their facilities in the United States, however, no specific documentation of this was included in my review materials.

As noted earlier an additional/ +/- 6 parking spaces if the main access drive were relocated further west and consideration of land-banked employee spaces (a one-way aisle to minimize depth) may be of interest on the north side of the building (see Figure 1.).

Table 1. Parking Demand/Supply Sensitivity Analysis – Ashton Gardens								
Scenario	Projected Demand (spaces)	Req'd Parking Supply (spaces)	Spaces Provided On Current Plan	Shortfall(-)/ Surplus(+)				
Village Ordinance (3.3 persons/vehicle)		104 1	140	+36				
Derived Demand Scenario 1 (2.5 persons/guest vehicle) (1.2 persons/employee veh.)	300/2.50 = 120 30/1.2 = 29 Total = 149	149/.9 = 165 ²	140	-25				
Derived Demand Scenario 2 (3.0 persons/guest vehicle) (1.2 persons/employee veh.)	300/3.00 = 90 30/1.2 = 25 Total = 115	115/.9 = 128 ²	140	+12				

Calculated by Village staff based on Village Ord.

Certain events with a higher number of children in attendance than a wedding (such as quinceaneras) or lower adult auto occupancies (i.e. after work office banquets where auto occupancies are more like the typical employee commute) may generate parking demand significantly higher than assumed by the Village ordinance or demand scenarios above.

The corner site is located at the intersection of two arterial streets with no on-street parking permitted and with no on-street parking capability on within reasonable walking distance. As a result careful attention must be paid to parking demand and on-site supply to insure that all parking can be accommodated without parking spilling over onto private parking lots or residential streets or where guest vehicles are forced to circulate continuously through the site (or worse, in and out of the site on adjacent streets) in their search for a parking space. Devon Avenue seems to be the type of 4-lane street that most guests would not associate with on-street parking, however, the three-lane Prospect Avenue has a local residential feel to it that may not convey "no parking" as strongly. No parking signs on Prospect should be installed if this were to become a problem.

Initial wedding events could be scheduled so that they fall below the maximum legal occupancy of the reception hall in order to verify parking demand. Subsequent events which may be anticipated to generate a higher level of parking demand than a traditional wedding could also have occupancy caps.

Opportunities for valet parking for larger events using remote lots under agreement with other commercial property owners appear to be limited but could be considered.

IV. Review Findings/Recommendations

1.a. Site and Off-Site Capacity (Level of Service)

Site driveway capacity (level of service) are projected to be good, and offsite operations at the signalized intersection of Devon and Prospect will not be adversely impacted by the proposed use.

² Required parking supply assumes a 10% design surplus factor to support ease of space finding and user convenience.

1.b. Overall Site Accessibility (Wayfinding)

Access routing options from the west, northwest and east may be somewhat confusing to some guests. It would be desirable for Ashton Gardens management to consult with Village staff on preferred routings displayed on their web site.

2.a. Turn Lane Warrants

I would concur with the applicant's traffic report that left- and right-turn lanes do not appear to be warranted at site access drives on Devon and on Prospect.

2.b. Site Access Location/Design

Consider relocating the main access on Devon further west (Figure 1.) to move it away from the EB left-turn lane entry taper on Devon at Prospect (this could also create potential for added parking spaces internally). Consider restriping the median area north of Lido Terrace to maintain the existing SB left-turn lane but add legal median left-turn storage for the proposed site access (see Figure 1.).

c. Internal Circulation and (Fire) Truck Access

There is no internal connection for the rear (reception hall) loading berth. Service trucks will be forced to back out onto Devon. A truck turn-around pad could be considered near the northwest corner of the reception hall (Figure 1.).

Fire truck access through the main parking access aisle is tight. Verify that the design fire vehicle is compatible with the Village design fire truck and consider a slight modification to the curb line in the vicinity of the office building (see Figure 1.).

3. Parking

In my opinion, in the absence of strong internal scheduling controls, there may be some potential for event parking to exceed supply, especially when at maximum legal reception hall occupancy and for certain events with a higher number of children in attendance than a typical wedding (such as quinceanearas) or where lower adult auto occupancies could be expected (i.e. after work office banquets where auto occupancies are more like the typical employee commute). Since there is no overflow onstreet parking available on adjacent and nearby appropriate (i.e. non-residential) public streets, certain management considerations should be considered if the development is approved:

- Initial wedding events could be scheduled so that they fall below the maximum legal occupancy
 of the reception hall in order to verify actual parking demand. Subsequent events which may be
 anticipated to generate a higher level of parking demand than a traditional wedding could also
 have temporary occupancy caps below the legal limit of the reception hall.
- A sufficient time-gap should be scheduled between the end of a wedding service and the
 beginning of the reception to allow those wedding service attendees not staying for the
 reception to leave the site prior to reception-only guests arriving.

 Prospect Avenue has a local residential feel to it that may not convey "no on-street parking" to guests as strongly as Devon Avenue. No parking signs on Prospect should be installed if this were to become a problem.

Relocation of the main Devon access drive to the west would create an additional +/- 6 guest parking spaces. Land banked employee parking (one-way aisle) could be considered on the north side of the reception hall connecting the service drive to the main Devon access drive (Figure 1.).

.....

From:

Jim Plonczynski

Sent:

Monday, July 18, 2016 8:49 AM

To:

Roberta Grill

Subject:

FW: Ashton Gardens

RECEIVED **COMMUNITY DEVELOPMENT**

JUL 18 2016

VILLAGE OF BARTLETT

FYI

From: Lorna Giless

Sent: Monday, July 18, 2016 8:47 AM

To: Valerie Salmons < VLSalmons@vbartlett.org>; Jim Plonczynski < JPlonczynski@vbartlett.org>

Subject: FW: Ashton Gardens

The e-mail below was sent to the Mayor.

Lorna Gíless Village Clerk/Executive Secretary Village of Bartlett 228 S. Main Street Bartlett, IL 60103

Phone: (630) 540-5908

Fax: (630) 837-7168

From: MICHAEL TOVELLA

Sent: Sunday, July 17, 2016 11:39 PM To: Kevin Wallace < kwallace@vbartlett.org>

Subject: Ashton Gardens

Mr. Kevin Wallace,

The reason for this e-mail is to express my concern with a proposed development of land on the corner of Prospect and Devon. I live at 208 Lido Trail.

Last week some of the property owners from the surrounding neighborhood myself included meet with the Texas investor who is looking to develop the land.

I would safely say almost no one came away from the meeting with a good feeling.

Some of the concerns are as follows: The closing time of 12:30 AM, safety, cars parking in the subdivision and people walking to the facility, traffic congestion, negative impact on property values, alcohol consumption. The chapel will be three stories.

I would like to know if a special use permit is needed? Any impact studies been done? Does the village really need another banquet facility? Is this facility good for the community? Thank you for your time,

From:

Jim Plonczynski

Sent:

Monday, July 18, 2016 9:10 AM

To:

Roberta Grill

Subject:

FW: Ashton Gardens neighboor issues

RECEIVED COMMUNITY DEVELOPMENT

JUL 1 8 2016

VILLAGE OF BARTLETT

FYI

From: Lorna Giless

Sent: Monday, July 18, 2016 9:00 AM

To: Valerie Salmons < VLSalmons@vbartlett.org>; Jim Plonczynski < JPlonczynski@vbartlett.org>

Subject: FW: Ashton Gardens neighboor issues

Here's another one that was sent to the Mayor and Board.

Lorna Gíless
Village Clerk/Executive Secretary
Village of Bartlett
228 S. Main Street
Bartlett, IL 60103

Phone: (630) 540-5908 Fax: (630) 837-7168

From:

Sent: Sunday, July 17, 2016 3:45 PM

To: Kevin Wallace < <u>kwallace@vbartlett.org</u>>; TL Arends < <u>tlarends@vbartlett.org</u>>; Michael Camerer < <u>mcamerer@vbartlett.org</u>>; Vince Carbonaro < <u>vcarbonaro@vbartlett.org</u>>; Raymond Deyne < <u>rdeyne@vbartlett.org</u>>; Adam Hopkins < <u>ahopkins@vbartlett.org</u>>; Aaron Reinke < <u>areinke@vbartlett.org</u>>

Subject: Ashton Gardens neighboor issues

To the Bartlett Board of Trustees:

Naturally concerning to all of us in East Point Estates subdivision regarding the proposed Ashton Gardens facility will be the effects of this facility on our quality of living, property values, privacy, public safety, etc. So far our neighborhood has been very peaceful and tranquil to raise families. However, the impact of this large busy facility and the influx of over 300 people till 12:30AM will bring, traffic, noise, odors, activity, etc. to our immediate area. In surveying neighborhood responses, here is a list of their concerns:

Road ways:

- Drunk Drivers and the safety of Bartlett Families.
- Traffic congestion in the heart of town not designed for this amount of traffic
- Parking...that can't be enough to accommodate workers and guests...
- Spill-over parking will legally roll into our streets...who polices this?
- What about back-to-back weddings...parking during the transition period, over flow, etc...

Property values

- our primarily belief is a drop in value
- How will the result in tax revenue benefit all of us?

Neighborhood effects:

- Noise will the back doors remain open at times?
- Noise how do we deal with the thumping sound that transmits through their walls into our homes or rowdy guests?
 - What about inebriated people walking around the area?
 - Sounds like everyone else sees the nice front elevation but all of us have to deal with the back side...
 - Lets see the Environmental Impact Studies water run-off, snow piles, road traffic, etc.

Facilities:

- How will the facility be maintained?
- They claim "upscale weddings" but that doesn't mean the guests are "upscale". Guests can be from all social classes, demographics, walks of life, and locations
- Will there be security on site during events?
- fence will be built, what are the details....chain link, soundproof, cosmetics, height?
- loud banging of dumpsters and garbage trucks...
- Will dumpsters draw homeless for food?

Future:

- What are the rules? Let's say the place goes bankrupt and there is a chapel. Could it turn into a place of worship, church, or mosque if the concept doesn't work...what about future zoning?
- Are the 2 Village banquet halls over-booked??? Why would they invite competition to their own business? What about the new Dunham Castle facility, that's up-scale?

Other locations:

- Ashton compares to how nice their other facilities are in TX and GA, but those places are primarily surrounded by forest or in business parks...
- Are there any located in residential areas? What do the neighbors say?
- In reality the guests are not coming here to see nor patronize Bartlett...

Our biggest impact will be on:

- 1) Public Safety Drunks, DUIs, partiers, reckless driving, late nighters, adjacent road cut-thru's
- 2) Competing with Bartlett Hills, Villa Olivia, The Seville, Dunham Castle
- 3) Quality of life noise, odors, peacefulness
- 4) Environment

Since most are opposed, your consideration of these topics will be greatly appreciated.

From:

Lorna Giless

Sent:

Tuesday, July 19, 2016 1:24 PM

To:

Valerie Salmons; Roberta Grill; Jim Plonczynski

Subject:

FW: Ashton Gardens

From: Karyn Rizzo [mailto:karyn,rizzo@ipmg.com]

Sent: Tuesday, July 19, 2016 12:51 PM

To: Aaron Reinke <areinke@vbartlett.org>

Subject: Ashton Gardens

Aaron,

I am writing to you to request that you reject the Ashton Gardens proposal to build on the property at Devon and Prospect Avenues. There are better locations to build this business, locations on busy streets. Perhaps they should consider the existing vacant property of the Dominicks location.

As a resident of East Point Estates, I do not want to bear the negative effects of this establishment on my property values. We have lived in a peaceful neighborhood since inception and would hate to see an influx of traffic and noise in the area.

Please support the residents of Bartlett East Point Estates.

Thank you,

Karyn Rizzo 205 John Drive

From: Lorna Giless

Sent: Wednesday, July 20, 2016 9:48 AM

To: Valerie Salmons; Jim Plonczynski; Roberta Grill

Subject: FW: Asbury Place Homeowner Concern

The e-mail below was sent to the Mayor and Board.

Lorna Gíless
Village Clerk/Executive Secretary
Village of Bartlett
228 S. Main Street
Bartlett, IL 60103

Phone: (630) 540-5908

Fax: (630) 837-7168

From: Katie Zwolski mallto kz

Sent: Tuesday, July 19, 2016 8:07 PM

To: Kevin Wallace <kwallace@vbartlett.org>; TL Arends <tlarends@vbartlett.org>; Michael Camerer <mcamerer@vbartlett.org>; Vince Carbonaro <vcarbonaro@vbartlett.org>; Raymond Deyne <rdeyne@vbartlett.org>;

Adam Hopkins <ahopkins@vbartlett.org>; Aaron Reinke <areinke@vbartlett.org>

Subject: Asbury Place Homeowner Concern

Dear Bartlett Village President Kevin Wallace and the rest of the Village Trustees,

I am writing to you in regards to the poorly written letter I received today addressed to the Asbury Place association.

Let me start off by saying that I was raised in Bartlett since birth. I am a recently new homeowner in Bartlett, just 4 years under my belt. Buying my first home in the same town I grew up in clearly shows that I felt safe in Bartlett and enjoyed this small town and decided to stay once I became a college graduate and a woman in the working world. I have always found Bartlett to be a nice, humble town with leaders that valued the public opinion and kept us in their best interest. That is, until reading your letter today.

I did receive a previous letter that a facility was hosting an informational meeting and looking for input from the community, however, I was in the beautiful state of Oregon witnessing my brother exchange his wedding vows and was unable to be present. My plans had been set for months to attend my brother's wedding. Sorry to "disappoint" you all, but I do have a life and <u>you have no business</u> telling me how I should plan my life around your meeting schedules.

It was stated in the opening paragraph that you were, and I quote, "disappointed" that only 10% of homeowners attended the informational meeting about a new facility that is being built in the area which will affect our property value, quality of life, safety, traffic congestion, and peacefulness in our neighborhood. Nowhere in the initial letter did it state that any of these issues were being addressed. It was made clear that the business wanted to gather thoughts about the layout and look of their new facility. Additionally, it is clear that you don't know the demographic of this subdivision. Many of the townhomes are rented out, so I'm sure renters would not attend your abrupt meeting that was being held. They could care less. The poor choice of words and attack on our members was extremely offending. Attending meetings is a right and a choice that I have. It is not mandatory that I go.

In the middle of the letter you state that there is a village meeting being held on July 19, which was today. I arrived home late this afternoon from celebrating with my brother, so I was also unable to attend this meeting. Furthermore, you state a time, but lack to state the place as to where the meeting will be held. Even if I could attend, I wouldn't know where to go! **POOR COMMUNICATION** on your part. I'm sorry to say, and yet again you did not give people enough time to schedule their plans accordingly. This meeting was scheduled less than a week after the first informational meeting about the facility. It is summer. A time when people go on vacations. I'm sorry that you think that we sit around waiting for meetings to attend, but we don't.

In your letter you also state that the safety of our neighborhoods could be affected. My question to you is this- Why would you allow a facility to be built in Bartlett if you felt that it would affect the safety of our neighborhoods? Isn't that why we elected you to be officials of this village? Your job is to ensure the safety of our community members. I would hope that you are seeking out opportunities to help the economy of Bartlett in SAFE ways. Otherwise, I would question as to why you are in these leadership roles.

The lack of disrespect from Bartlett is leaving a poor taste in my mouth and will probably encourage me to move out of town when I decide to start a family.

I am (to use your words) "disappointed" in the lack of leadership and respect you have not given to the hardworking members of this community. We have lives and I'm sorry that you don't understand that. I hope that the next time you decide to send a letter to the community members, you have a better choice of words and show more respect.

A concerned Asbury Place Homeowner and Bartlett Community Member,

Katie Crawford

From:

Jim Plonczynski

Sent:

Tuesday, July 19, 2016 11:16 AM

To:

Roberta Grill

Subject:

FW: Please do not support the Ashton Gardens project

FYI

From: Lorna Giless

Sent: Tuesday, July 19, 2016 9:42 AM

To: T.L. Arends (home) <tntarends@sbcglobal.net>; Michael Camerer <mcamerer@vbartlett.org>; Vince Carbonaro <vcarbonaro@vbartlett.org>; Raymond Deyne <rdeyne@vbartlett.org>; Adam Hopkins <ahopkins@vbartlett.org>;

Aaron Reinke <areinke@vbartlett.org>

Cc: Valerie Salmons < VLSalmons@vbartlett.org>; Jim Plonczynski < JPlonczynski@vbartlett.org>

Subject: FW: Please do not support the Ashton Gardens project

From: Jim Regan imailto jamespatrickregan@email.com

Sent: Tuesday, July 19, 2016 9:35 AM

To: Kevin Wallace < kwallace@vbartlett.org>

Subject: Please do not support the Ashton Gardens project

Village President Wallace,

Good morning.

My name is Jim Regan. My wife, Ann, our two daughters and I live on Hillandale Drive in the East Point Estates neighborhood. I am writing to you today to beg you to stop this plan to allow Ashton Gardens to build at the intersection of Prospect and Devon.

I have been on their website, and I have seen pictures of beautiful chapels at their other locations. However, let's not be swayed by the window dressing. With or without the preceding wedding ceremony, you would effectively be approving a private dance club to open adjacent to one of the quietest residential areas of Bartlett. This business will host a 1 hour ceremony followed by 4-6 hour parties where hundreds of people will gather to eat, drink alcohol, and dance to music from a DJ or live band. How is that different from a dance club?

We have known for years that this plot is zoned for commercial use, but this business is the wrong type for business for this location. Here are the issues we have with this specific plan:

Increased Traffic: This location is not adjacent to any major road, like Lake Street or Route 59. From any direction, guests will be passing through residential areas both before and after their night of celebrating.

Parking Issues: Should this business's lot ever be full, where will those excess vehicles go? On the streets of our neighborhood. Even if overflow parking is added across Prospect or allowed at Leiseberg park, I can assure you that people will take the closer option of parking on Hillandale or Lido.

Keep in mind with both of these issues above, our homes are only accessible via those two streets: Hillandale and Lido. There is no possible way for the residents of our neighborhood to avoid this business (and the associated traffic) by traveling south or west. None.

Increased Noise, particularly late into the night: Again, any reception hall has all of the issues of a dance club once the party begins. In addition to the music, you will have guests and staff alike gathering outside to smoke and talk. This will be followed by over-served guests stumbling to their cars, and occasionally fighting in the parking lot.

I grew up just outside Chicago, where a CTA bus passed by my house 5 times an hour, and I could still hear the noise from the bar/dance club that was a block away. Among the reasons I now live in Bartlett is to get away from that noise and traffic associated with the city.

Increase in Drunk Drivers traveling through the heart of Bartlett: If allowed to open, Ashton Gardens will increase the number of drunk drivers on the roads of Bartlett, simply by the nature of their business. This would be true of any business that routinely offers guests a 4-6 hour open bar, so I do not mean to single them out. I simply want to highlight how horrible this location is for this type of business, as there is no way for their guests to leave Bartlett without these drunk drivers passing through so many residential areas.

Again, living near a bar/dance club growing up, I have firsthand experience with drunk drivers hitting our cars parked on the street, driving across our lawns (as evidenced by tire tracks in the snow) and we even had our house struck not once, but twice by drunken drivers. And still, we were lucky in that our damages were limited to property.

I completely understand the need to get more business into Bartlett, but this is such a bad idea for this particular location. Adjacent to a dozen homes and within earshot of hundreds of neighbors, if you approve this plan to move forward, you would be allowing a loud business to operate late into the night when working people and families are trying to sleep while also inviting drunk drivers to meander through our streets as they attempt to find their ways home.

I ask, would you want this business directly behind your home? Or even at the end of your block? I assure you that the families, tax payers, and voters in East Point Estates most certainly do not.

I implore you to stop this project from moving forward.

Thank you

Jim Regan

jamespatrickregan@email.com 630-254-9102

From:

Patrick Cannone patrickcannone

Sent:

Tuesday, July 19, 2016 10:34 AM

To:

Kevin Wallace; TL Arends; Michael Camerer; Vince Carbonaro; Raymond Deyne; Adam

Hopkins; Aaron Reinke

Subject:

Aston Garden porposal - Deny approval to build

To whom it may concern:

It has come to our attention in recent months that the property at the southwest corner of Devon and Prospect is in negotiations to break ground. The community of East Pointe Estates are VERY concerned for the wellbeing of our community. A few points to highlight are as follows:

- 1. Notification to impacted residences I live on Anita Drive and was NOT notified by the village or the potential buyer. I found out about the potential sale by word of mouth within our community. This is very disturbing because it appears the process at the village is once again broken. For example, when I had to repair and replace an existing deck on my raised ranch, I had to have two Public Notice signs on my residential lot and mail 60 certified mail letters explaining what I was doing to the surrounding impacted community. Clearly, it appears that to abide by the building permit rules of the Village of Bartlett is optional. The Village doesn't take what is in the best interest of the community into account. The roles and responsibility of the Village board is to listen to its people and to abide by the laws of the community to keep our residences safe. We don't believe this is occurring and the word of mouth is quickly spreading to other Bartlett communities.
- 2. <u>Taxes</u> Our community taxes have gone up significantly. I want to confirm that the new buyer will NOT be getting any tax incentives, i.e. property, employment, etc.
- Parking Our community is very concerned about the overflow parking coming to our streets. We are concerned about the safety of our property and we work hard to keep it clean. How many parking spots will they be building? Now a days each family drives 2-3 cars to an event. It doesn't appear that a building and 200-300 parking spots can fit on that lot.
- 4. <u>Property Values</u> We work hard to keep our community looking great in order to increase our property values. The risk of building the Aston Gardens will devalue our properties, i.e. garbage smell, unwanted animals, littering, etc. The devalue of our properties that we CAN control is unacceptable.
- 5. <u>Location</u> It would make sense to most of us that the potential buyer would want to be on a busy road in order to attract more clients and advertise the facility, i.e. for example the corner of Sterns and 59. We already have distressed properties we need to get rid of. Why can't we start there? Why is the above mentioned land zoned for commercial in the first place when the whole south side of Devon is residential property? It appears it would be in the best interest of the Village of Bartlett to build homes on that land to attract more family friendly communities. We already have banquet halls in Bartlett. Do they know this is going on? How will

it impact there businesses? It appears not enough due diligence and awareness was conducted.

As you can see our community is very concerned about the project. It is imperative that we deny the sale of the property to Aston Gardens.

Thanks
Patrick Cannone
Anita Drive
Bartlett

From:

Lorna Giless

Sent:

Wednesday, August 03, 2016 10:44 AM

To:

Roberta Grill

Subject:

OPPOSE Aston Gardens development

Lorna Giless

Village Clerk/Executive Secretary Village of Bartlett 228 S. Main Street Bartlett, IL 60103

Phone: (630) 540-5908

Fax: (630) 837-7168

From: James Pish mailto:iim@c

Sent: Tuesday, July 19, 2016 8:19 AM

To: Kevin Wallace < kwallace@vbartlett.org>

Cc: TL Arends <tlarends@vbartlett.org>; Michael Camerer <mcamerer@vbartlett.org>; Vince Carbonaro

<vcarbonaro@vbartlett.org>; Raymond Deyne <rdeyne@vbartlett.org>; Adam Hopkins <ahopkins@vbartlett.org>;

Aaron Reinke <areinke@vbartlett.org>

Subject: OPPOSE Aston Gardens development

Good Morning,

I am writing this email to voice my strong opposition to the planned Aston Gardens development at the corner of Devon and Prospect in Bartlett.

Forcing this facility into a community that it will not fit will be a tragedy to the people that live here.

For this concern to be successful, it will necessarily fill every weekend with noise, parking issues and security problems for everyone in the surrounding community.

I hope the village board will strongly consider the significant affect this will have on the quality of life of Bartlett residents.

Please reject this development, and wait for something that is appropriate to the area that shows more consideration of the people that live here.

Thank you.

James Pish

396 Bradbury Lane Bartlett, IL. 60103

From:

Lorna Giless

Sent:

Wednesday, August 03, 2016 11:03 AM

To:

Roberta Grill

Subject:

Ashton Gardens feedback

----Original Message----

From: Jon Kelly mailto: jonathanekelly@msn.coi

Sent: Monday, July 18, 2016 10:45 PM

To: Kevin Wallace <kwallace@vbartlett.org>

Subject: Ashton Gardens feedback

Dear President Wallace,

I am writing to provide feedback on the proposed Ashton Gardens project being considered for the parcel of land located on the southwest corner of the intersection of Devon and Prospect. We have lived in the East Pointe Estates subdivision for 16 years, and while I am not well versed in the relevant town ordinances, it would appear that the location of our house on Deanna Drive is considered outside of the "officially" affected proprieties. This is based on the notifications provided by the Ashton Gardens representative, as we were not on the list of households notified by mail by the Ashton Gardens company. So, the first point I would like to make is that regardless of the distance that a house in East Pointe Estates is from the proposed facility, we will all be impacted because the only 2 entrances to our subdivision are located on either side of the land where this facility will be located. In my view, given the likely impact on traffic from a facility that caters to crowds of 200+, anyone who enters or exits on either Lido Trail or Hillandale will be affected. So with that in mind, I feel that my feedback should be taken into consideration prior to making any final decision, or formal approval being given, by the village related to this project moving forward. Unfortunately due to my travel schedule, it is unlikely that I will be able attend many (perhaps any) of the various meetings where citizen input can be provided and hence I am writing this email to you personally.

Until I know more about the planned facility and how its presence will impact all of the residents in the area, I do not have a specific opinion for or against it. My personal preference would be that it remain an undeveloped parcel of land, but I recognize that is impractical as the current owner of the land is likely looking for some return on their investment. If properly constructed, maintained, managed and regulated, I believe this type of business could be one option that has minimal negative impact on those of us whose neighborhood will be affected merely because of our proximity to its location. That being said, I do have concerns related to several items that I would like you individually, and the Village as a whole, to consider prior to this being allowed to move forward. Again, I am not deeply familiar with the relevant ordinances that may or may not affect how these items are addressed, but I ask that you step back from the letter of the law when evaluating these items and think about them from the perspective of a fellow resident and as if the facility were being built in the immediate vicinity of your home.

- 1) Is this truly a viable business that will positively impact the lives of Bartlett residents and will remain in business for years to come? If this is built and the business fails in say 2-5 years, what will become of the facility? Bartlett already has a dearth of empty large buildings which are struggling to be repurposed for use by other businesses. In my mind, it is one thing to attract another business into a typical storefront in a strip mall, or even into a former grocery store, but what exactly would you be able to do with a former chapel and banquet facility?
- 2) Keeping point (1) in mind, I am a bit concerned as a resident who already has somewhat of a vested interest in 2 banquet facilities. As a taxpayer within both the Village of Bartlett and the Bartlett Park District, I consider the Bartlett Hills Golf Club and Villa Olivia to be semi-government run businesses in which I am a partial owner. Looking at it from this perspective as a taxpayer, I would prefer not to have a new business come in to compete with some of the services

those facilities provide because that would pose a threat to the status quo of how my current tax dollars are being utilized. Ideally, both of those facilities are self sustaining and my taxes are not subsidizing their operations (unsure if that is true), but if competition takes away some of their business, I am sure that the government entities responsible for them will spend multiple years trying to keep them running by funding their operations while either raising my current taxes or reducing other services that are important. Also from a competition perspective, I do wonder if the investors in Ashton Gardens have considered the additional competitive threat that the remodeled Dunham Castle facility will provide? That is another item to think about when evaluating if this business is viable.

- 3) My next point for you to consider has to do with the neighborhood impact of the required parking spaces at the facility. From a neighborhood quality of life perspective, this is one of my primary concerns. Again, I am severely deficient in my knowledge of the applicable ordinances and regulations that determine the quantity of spaces required of this type of facility. That being said, I would be truly surprised if when the formula that is used for calculating the number of required spaces was created that it was envisioned to account for what I see as a very unique type of venue with very different customer and vehicular usage patterns. I mean based on the Ashton Gardens company's own admission, this is meant to be a one of a kind of venue in all of Chicagoland, so how could we have possibly accounted for a business where they expect 200 plus guests (not to mention employees and other service providing staff - caterers, florists, musicians, livery, photographers and other companies that provide services aimed specifically at weddings) to arrive en mass at a specified start time? Even assuming every invited guest comes 2 to a car, I find that the proposed number of parking spaces I have seen in the artists renderings to seem woefully inadequate. As you may imagine, my concern is where will the overflow parking be permitted? I certainly would prefer that it not be on the residential streets of East Pointe Estates. I hope that if approved the Village will also plan on monitoring and patrolling our neighborhood during the events to enforce existing ordinances or perhaps will consider enacting additional regulations to ensure our streets are not negatively impacted by an overflow of vehicles and traffic. Again this is something that I hope you will consider as the review process moves forward.
- 4) My final point is again related to the parking, but in this case it relates the environmental impact that concreting over such a large green space will have. I know that there now exist several other options for parking surfaces that allow rainwater to seep through the surface (vs. running off into gutters and then storm sewers). There have been so many cases in recent years of flooding around Bartlett that have subsequently required massive investment for further improvements to remedy the drainage of flood water that I hope the Village will have the foresight to work with Ashton Gardens to come up with an approach that avoids those kinds of future problems. I believe that the new recreation facility in Carol Stream utilizes one if these non-solid concrete surfaces and I hope a solution of this type or something similar will be strongly encouraged (and perhaps insisted upon), prior to providing approval to move forward.

I am sure that there an many other impacts that I have not considered - both positive and negative. I know there will be a lot of people on both sides of the argument for and against this project. My request of you is to please consider all sides of the argument and think ahead to the many downstream impacts that this project will have before you make a final decision. Please remember the entire population of Bartlett will likely be impacted by this in some way, but those of us who live closest to the Ashton Gardens development will have to live with it day and night for years to come.

Thank you.

Jon Kelly

437 Deanna Drive Bartlett, IL 60103

jonathanekelly@msn.com/

Jon Kelly

RECEIVED COMMUNITY DEVELOPMENT

AUG 0 2 2016

VILLAGE OF BARTLETT

RICK CHAFFIN

CITY MANAGER CITY OF CORINTH

3300 CORINTH PKWY CORINTH, TEXAS 76208 840-498-3200

To Whom It May Concern,

On behalf of the City of Corinth, Texas it is my pleasure to recommend Ashton Gardens as a premier venue for your community.

Ashton Gardens is an asset to the community and has been a model corporate citizen in Corinth since it opened. In addition to attracting a significant amount of visitors and corporate business to Corinth each year, Ashton Gardens has also been the preferred location of many of the City's special events including the annual Police and Fire Banquet, as well as the first annual City Volunteer Appreciation Dinner in October of 2015.

The City of Corinth is fortunate to be the home of a truly unique venue like Ashton Gardens. Please feel free to contact me if you have any questions or need additional information.

Best Regards,

Rick Chaffin

City Manager City of Corinth

RECEIVED COMMUNITY DEVELOPMENT

AUG 0 2 2016

VILLAGE OF BARTLETT

August 7, 2015

To Whom It May Concern:

The City of Sugar Hill is proud to be home to Ashton Gardens Atlanta. Since they opened their doors in Sugar Hill in 2012 less than a mile from our downtown, they have been an ever-present member of the Sugar Hill community as well as the greater Gwinnett County area. Their elegant facility and calm and serene scenery creates a hidden gem in our flourishing suburb of Atlanta. Voted Best of Gwinnett in 2013 and The Knot's Best of Weddings from 2008 to 2013, Ashton Gardens is a jewel of our community.

We share common goals of excellence in customer service and world-class facilities. The leadership of the facility in Sugar Hill as well as President Brad Schreiber in Houston has been accessible and responsive. They are a great corporate and community partner, serving as a sponsor and participant in our "Sweet Life Concert Series" and other downtown events.

Ashton Gardens Atlanta hosts over 300 upscale weddings and functions per year, bringing in literally thousands of new guests through their doors every year. The City has experienced a significant positive economic impact thanks to the presence of Ashton Gardens. In fact, we are looking for ways to attract the interest of a hotel developer to capture the 1200-1500 hotel night stays created by their wedding events every year.

As city manager of Sugar Hill, I would highly recommend Ashton Gardens to any community fortunate to have them considering the siting of a new facility in their community. Their facility would add significant value to any community landscape.

Best Regards,

Paul D. Radford

City Manager

C: Mr. Brad Schreiber, President Ashton Gardens

INVERNESS FOREST HOME OWNER'S ASSOCIATION

COMMUNITY DEVELOPMENT

AUG 0 2 2016

7/22/16

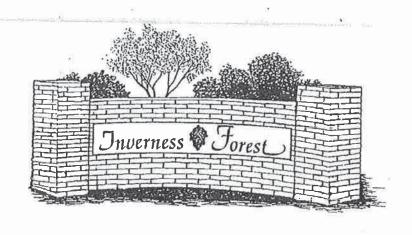
VILLAGE OF BARTLETT

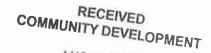
To Whom It May Concern:

I am the President of the Inverness Forest Home Owner's Association. The purpose of this correspondence is to give support and a recommendation for the Ashton Gardens Corporation.

Since the completion over ten years ago, of the Ashton Gardens facility located at 21919 inverness Forest Blvd., we have had a good neighboring relationship with this company.

Ashton Gardens has always been respectful of the residents in our community. At no time have there been complaints of loud music, alcoholic related activities, or any type of criminal behavior. Ashton Gardens has never caused an issue related to parking or deliveries for our subdivision. The company has utilized their own private drive for all traffic traveling in and out of the facility during hours of operation.


Management has always maintained a clean and well-manicured property. We are happy to have a good partnership with the Ashton Gardens Corporation and would recommend this company as a neighbor.


Sincerely,

Delight Flanagan

President, Inverness Forest Home Owner's Association

Delight Ilonago-

Oakmont Country Club Property Owners Association c/o Vision Communities Management, Inc.

6305 Preston Road, Suite 900 Plano, Texas 75024 ~ 972-612-2303 VILLAGE OF

BARTLETT

AUG 0 2 2016

August 1, 2016 Re: Ashton Gardens

To Whom It May Concern,

The Oakmont Country Club Estates Property Owners Association is writing to relay our recommendation for Ashton Gardens to be granted building rights for a facility in your area. The Ashton Gardens venue in Denton Texas sits on the right side of the main entrance to our neighborhood, Oakmont Country Club Estates.

Ashton Gardens has been a good neighbor to our community in many ways, one example of such was their willingness to allow our community to host one of our Annual Meetings at their venue. The space was comfortable, ample to accommodate our number of guests, clean and welcoming.

We have never experienced any loud noise issues or complaints from our residents about any parties or events held in the venue, similarly we have never had any issues or complaints with the Ashton Gardens Staff. The property is always well maintained, clean and attractive to passerby's. Ashton Gardens Management and Staff has always been respectful to us and our residents.

Please do not hesitate to contact us regarding this correspondence,

Amber Anderson
Chief Financial Officer / Owners
Vision Communities Management, Inc.
On behalf of the Oakmont POA Board of Directors
Email; amber@vcmtexas.com

RECEIVED COMMUNITY DEVELOPMENT

AUG 0 2 2016

VILLAGE OF BARTLETT

Phone: (940) 498-2017

Fax: (940) 498-4509

July 26, 2016

The Village of Bartlett Board of Trustees 228 S. Main St. Bartlett, Illinois 60103

Dear Board of Trustees,

First off I would like to start off by introducing myself. I am Lieutenant Jimmie Gregg and I have been in law enforcement for approximately 19 years and have served 17 of those years here in the City of Corinth. I have overseen the security operations at Ashton Gardens since 2010. I can tell you Ashton Gardens is a top notch business and the City of Corinth is lucky to have such an establishment. Ashton Gardens opened their doors in 2009 and have been wonderful neighbors to the adjacent neighborhood, Oakmont, ever since. Ashton Gardens is very respectful of its neighbors as they have many constraints on nuisance type issues such as deliveries, activities in the parking lot, and loud music, just to name a few. The property at Ashton Gardens is always clean and well kept. In the seven years they have been open the police department has not experienced an increase in alcohol related issues at the property or in any of the adjacent areas. Please feel free to contact me directly for any further questions you may have about Ashton Gardens.

Sincerely

neutenant Jimmie Gregg